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Abstract—Due to the difficulty of collecting paired Low-
Resolution (LR) and High-Resolution (HR) images, the recent
research on single image Super-Resolution (SR) has often been
criticized for the data bottleneck of the synthetic image degrada-
tion between LRs and HRs. Recently, the emergence of real-world
SR datasets, e.g., RealSR and DRealSR, promotes the exploration
of Real-World image Super-Resolution (RWSR). RWSR exposes
a more practical image degradation, which greatly challenges
the learning capacity of deep neural networks to reconstruct
high-quality images from low-quality images collected in realistic
scenarios. In this paper, we explore Taylor series approximation
in prevalent deep neural networks for image reconstruction, and
propose a very general Taylor architecture to derive Taylor
Neural Networks (TNNs) in a principled manner. Our TNN
builds Taylor Modules with Taylor Skip Connections (TSCs) to
approximate the feature projection functions, following the spirit
of Taylor Series. TSCs introduce the input connected directly with
each layer at different layers, to sequentially produces different
high-order Taylor maps to attend more image details, and then
aggregate the different high-order information from different
layers. Only via simple skip connections, TNN is compatible
with various existing neural networks to effectively learn high-
order components of the input image with little increase of
parameters. Furthermore, we have conducted extensive exper-
iments to evaluate our TNNs in different backbones on two
RWSR benchmarks, which achieve a superior performance in
comparison with existing baseline methods.

Index Terms—Image Super-resolution, Real-World Super-
resolution, High-order Information, Taylor Neural Network,
Taylor Attention Map, Taylor Skip Connection.

I. INTRODUCTION

IMAGE super-resolution (SR) aims to address an ill-posed
problem of image degradation to reconstruct high-quality

images from observed low-quality ones [1]–[4]. However, the
SR research heavily relies on the synthetic degradation that
hand-crafts paired images by down-sampling high-resolution
(HR) images into their low-resolution (LR) counterparts. This
inevitably suffers from a bottleneck of practical applications
in the real world. Accordingly, with the establishment of real-
world SR benchmarks, e.g., RealSR and DRealSR, real-world
image super-resolution (RWSR) has increasingly attracted a
research interest on real heterogeneous image degradation [4].
To address this challenge, this inspires the further SR research
on exploring how to reconstruct high-resolution images with
more details from their low-resolution counterparts.
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In the past years, many deep neural networks based SR
approaches, e.g., SRCNN [1], EDSR [2], ESRGAN [3], R-
CAN [5], IPT [6] and SwinIR [7], have achieved remarkable
progress with significant performance improvements over con-
ventional methods. This progress, to some extend, is attributed
to the emergence of various sophisticated deep neural networks
as backbones, e.g., Residual Network (ResNet) [8], Squeeze-
and-Excitation Network (SENet) [9], Densely Convolutional
Network (DenseNet) [10], etc. Those networks were originally
proposed and successfully demonstrated in high-level tasks.
However, few works have paid attention to the learning mech-
anism for low-level vision tasks, especially for (real-world)
image super-resolution. Specifically, those networks process
input images sequentially with stacked layers and their archi-
tectures essentially are limited for explicitly learning the high-
order information of images. This would pose an obstacle to
learn image contents with high-frequencies that are crucial for
image super-resolution. This phenomenon is also demonstrated
in [11]: the second derivative of networks with Rectified Linear
Unit (ReLU) is zero everywhere, and they are thus incapable
of modeling information contained in high-order derivatives of
natural signals, which would lead to the sub-optimal results of
feature learning and function approximation with deep neural
networks. As shown in Fig.1, SRResNet [12] attends to flat
regions that are easier to reconstruct than textures at shallow
layers, and with the increase of layers, has fewer pixels that
are activated, especially for textures. This would not guarantee
the effective reconstruction of more image details [4].

To address this issue, this paper proposes a very general
neural architecture derived from Taylor series approximation,
named Taylor Neural Network (TNN), which is compatible
with various existing backbone neural network architectures.
Following the spirit of Taylor Series, we build features maps
(i.e., Taylor maps) with different order information of images
at different layers and aggregate them together to approximate
the feature projection function for image reconstruction. To
incorporate the higher-order information, SIREN [11] utilizes
periodic functions to replace ReLU, which essentially employs
the nonlinearity of the activation function. But it is sensitive
to the model initialization for training; it also does not se-
quentially build different high-order information at different
layers similar to TNN. It is evidenced in our experiment
that SIREN greatly underperforms TNN for image super-
resolution. Compared to attention-based models [5], [13], one
distinct difference is that attention-based models consider the
attentive information independently at each layer, which is not
explicitly learning of different high-order attentions. On the
contrary, in our Taylor formulation, our TSC is employed to
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Fig. 1. Visualization of learned feature maps at different layers. At different layers, those maps produced by our TNN, also named as Taylor feature maps,
have more pixels with large responses than those of SRResNet, which are prone to flat regions that are easier to reconstruct than textures. In particular, with
the increase of layers, fewer pixels are activated in SRResNet. Instead, our TNN, in a Taylor architecture, tends to learn more image details.

connect each layer to build different high-order information,
namely, different high-order attention maps. Particularly, our
Taylor architecture sequentially builds and further organizes
those high-order attention maps for reconstructing more image
details.

Our Taylor architecture renews the conventional network
formulation for feature learning and provides a principled way
in a simple but subtle manner for real-world image super-
resolution. This will be insightful to understand the feature
learning for low-level vision tasks. The proposed Taylor ar-
chitecture can be flexibly applied to various neural networks,
e.g., residual networks. Furthermore, we have evaluated our
TNNs under different SR models on two representative RWSR
datasets.

In brief, our contributions are summarized as follows:
• We propose a Taylor Neural Network (TNN) in a Taylor

architecture, which introduces the high-order attention of
the input following the spirit of Taylor series approxima-
tion. Taylor Neural Network is easily applied to various
neural networks to learn high-order attention maps for
feature learning.

• We propose Taylor Skip Connection to produce high-
order attention feature maps at different layers, named
Taylor maps, which are beneficial for the reconstruction
of image details. TSC introduces the input connected
directly with each layer to generate different high-order
maps at different layers and aggregates the different order
information at different layers.

• We conduct comprehensive experiments on two represen-
tative real-world SR datasets. Our experimental results
demonstrate that the proposed TNNs in different back-
bones have a remarkable capacity of learning features
for RWSR.

II. RELATED WORK

With the emergence of LeNet [14] as the pioneering work,
an unprecedented series of works on Convolutional Neural

Networks (CNNs) [15] have achieved a great progress and
established milestones of deep learning in computer vision.
Residual Network (ResNet) [8] has been proposed to ad-
dress the degradation issue of the model accuracy with the
increase of network depth. Densely Convolutional Network
(DenseNet) [10] connects each layer to other layers and
combines features from all the preceding layers at each layer.
Squeeze-and-Excitation Network (SENet) [9] investigates the
channel attentions that model the relationship between chan-
nels to adaptively recalibrate channel-wise feature responses.
Although they have been successfully demonstrated in high-
level tasks, those seminal networks are also utilized in low-
level vision tasks, greatly promoting the related research.
Especially, recent years have witnessed an evolution of image
super-resolution research with widely-explored deep learning,
which has significantly improved the performance against
traditional methods.

Deep learning based Image Super-Resolution. Dong et
al. [1] proposed the first deep learning-based SR method.
Subsequently, many CNN-based algorithms [16], [17] are
proposed to take low-resolution images as inputs and use
upsampling modules together with feature learning in deep
neural networks. By using residual learning to ease the training
of deeper networks, SRResNet [12] and EDSR [2] successfully
build a deep network that further improve the SR perfor-
mance. Based on traditional Laplacian pyramid algorithms,
LapSRN [18] presents a novel multi-level super-resolution
model which could generate multi-scale predictions from a
pair of LR and HR images. RCAN [5] designs a deep residual
channel attention architecture that involves residual in residual
(RIR) blocks for constructing the network. To be specific, each
residual in the residual module consists of several residual
groups (RGs) as well as long skip connections (LSCs), and
each RG contains some residual blocks and short skip con-
nections (SSCs). RRDB and ESRGAN [3] utilized residual
in residual dense blocks to enhance the learning ability of
feature representations. Component Divide-and-Conquer net-
work (CDC) [4] proposes an HGSR basemodel that leverages
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stacked Hourglass blocks [19] to encode features.
Recent years have witnessed the prosperity of self-attention

mechanism in low-level vision tasks, as it allows networks to
further investigate the deep prior of images and thus boosts
the global representation ability of networks. Inspired by the
emergence of Transformer in NLP, IPT [6] demonstrates a
novel self-attention based paradigm to solve multiple low-
level vision tasks including denoising, deraining as well as
super-resolution. To further reduce the parameters without
sacrificing the performance, SwinIR [7] combines the basic
swin transformer and residual learning to construct residual
swin transformer blocks (RSTB) for deep feature extraction.
To further explore the potential of self-attention mechanism
in image restoration tasks, Restormer [20] focuses on cap-
turing long-range pixel interactions for allowing the model to
achieve higher performance on high-resolution images without
suffering from computation bottleneck. And Uformer proposes
a hierarchical network following the design of U-Net, which
could combine multi-scale feature information for the image
reconstruction.

Real-World Image Super-Resolution. Deep neural net-
works have significantly advanced the progress of image super-
resolution, which cast the learning of single image SR models
as the supervised learning task with synthesized paired LR-
HR images [1], [2], [17]. Nevertheless, those datasets with
synthetic image degradation between LRs and HRs suffer
from a data bias in practical applications, which inevitably
invites a distinct performance drop [21]. Until 2019, a real-
world SR dataset, named RealSR [22], has been released
by physically adjusting the camera focal length to collect
paired LR-HR images. With a similar collection strategy, SR-
Raw [23] and City100 [24] have been built for RWSR. How-
ever, those datasets only involve very limited cameras (e.g.,
one or two cameras) and have very limited image diversity
(e.g., City100 is captured for printed posters in controlled
laboratory conditions). Subsequently, Wei et al. [4] use five
different cameras and build a large-scale Diverse Real-world
SR dataset (DRealSR), as the largest one.

Cai et al. [22] propose a Laplacian Pyramid based Kernel
Prediction Network (LP-KPN). LP-KPN inherits the spirit of
KPN and learns per-pixel kernels to recover HR images [22].
Zhang et al. [23] propose a contextual bilateral loss (CoBi) to
handle the slight misalignment between image pairs. However,
in essence, image degradation in RWSR is heterogeneous for
degradation kernels and is more complex among different
camera devices [4]. To mitigate this issue, Wei et al. explore
the learning bias in existing SR methods to those image
regions that are easily reconstructed and propose Gradient-
Weighted (GW) loss in the CDC model.

Nevertheless, the architectures of those widely-used neural
networks sequentially process input images with stacked layers
and are limited to well learn the high-order information of
images explicitly and directly. Thus, in this work, we investi-
gate the issue and propose Taylor Neural Network in a Taylor
architecture to improve the feature learning for image super-
resolution. Especially, our TNN can be implemented in differ-
ent neural architectures by simple Taylor skip connections,
with very little additional computation cost and additional

parameter number, and further improves previous SR models.

III. METHODOLOGY

In this section, we first revisit the conventional CNNs in the
SR task from Taylor series approximation, revealing the equiv-
alence of our network and Taylor polynomial approximation.
Then, we elaborate Taylor Neural Network and its connection
to the Taylor expansion. Finally, we further introduce another
two variants to explicitly learn high-order information under
neural networks.

A. Revisiting Convolutional Neural Networks in SR

Given the input image x ∈ R3×H×W , a deep neural
network with L layers is parameterized by parameters θ =
{(Wl, bl), l = 1, ..., L}, and essentially learns a mapping
function F : x 7→ Fθ(x). In the l-th layer, its output is
recursively computed with sequential layers as follows,

Fl = σ(Wl...σ(W1 ∗ x+ b1) + ...) + bl), (1)

where σ(.) is the activation function of ReLU. With the con-
volutional filter wl

ijc ∈ Wl ((i, j) is the 2-dimensional index
of a filter for the channel c), its derived convolution response
Fl(s, t) in the image position (s, t) is simply formulated as
follows,

Fl(s, t) = σ(
∑
c

∑
i,j

wl
ijcFl−1(s+ i, t+ j, c) + bl−1). (2)

(1) CNN for high-resolution image reconstruction. In-
dicated in Equ.2, each element of Fl is locally determined
with the receptive fields of the images. Due to the linearity of
convolution operation and the piece-wise linearity of ReLU,
together with Equ.1 and 2, the derived mapping via the neural
network is correlated with the input x in a first-order manner
when σ is ReLU function.

Based on this observation, we further analyze the neural
networks and find that this first-order network architecture
is not plausible for reconstructing high-quality images, espe-
cially those with complex textures or details that dominate
the contents with high frequencies in image reconstruction
problems. On the other hand, Equ. 1 and 2 indicate that
the reconstructed signal (image) is simply regarded as the
piecewise linear combination of the input. In the image super-
resolution task, with this formulation, super-resolved images
are derived from the interpolation of low-resolution images
(inputs). Nevertheless, this strategy tends to fail to address
the complex and heterogeneous image degradation in realistic
scenarios [4].

(2) High-order information in CNN for image super-
resolution. Essentially, the process of image super-resolution
can be regarded as mapping low-quality images into high-
quality images. However, ReLU in networks is piecewise
linear and would not provide the high-order information of
input images. ReLU networks are piecewise linear for which
each pixel of an output image is a linear combination of the
corresponding input image pixels. In other words, the ReLU
network is essentially an adaptive interpolation method for
pixels with different values and neighborhoods. In particular,
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the second derivative of ReLU networks is zero everywhere,
and they are thus incapable of modeling information contained
in high-order derivatives of natural signals [11]. Considering
the dilemma of the ReLU network, it is necessary to introduce
the high-order information of images and to further improve
the capability of deep neural networks.

(3) Connection with Taylor Expansion. On one hand, with
the linearity of convolution and the piece-wise linearity of
ReLU, F can be simply computed as follows,

F(x) = b+
∑

(i,j)∈R

αijx(i,j), (3)

where, for simplicity, x(i,j) ∈ x represent the pixels of
input images on the relative position with the convolutional
filter, R represents the receptive field and α is determined by
network parameters of different layers corresponding to the
same receptive fields. On the other hand, a function can be
approximated by the following Taylor expansion,

F(x) = b+
∑
(i,j)

∇Fx(i,j) +
∑

(i,j),(e,k)

∆Fx(i,j)x(e,k) + · · · ,

(4)
where ∇F represents the first-order partial derivative ∂F

∂x(i,j)

and ∆F is the second-order partial derivative ∂2F
∂x(i,j)∂x(e,k)

.
Comparing with Equ.3 and 4, we can find that the mapping
function derived from Equ.1 can be simply regarded as to be
identical to the first two terms of the Taylor expansion, i.e.,
equivalent to the first-order network. Thus, in a similar way,
we can devise a high-order neural network. With the increase
of layers, the network is trained via n-order Taylor expansion
approximation.

B. Taylor Neural Network

Based on the aforementioned analyses, we aim to explore
Taylor polynomial approximation in existing deep neural net-
works, to mitigate their inferior ability of learning the high-
order information for reconstructing high-quality images.

Specifically, we propose a Taylor architecture with Taylor
modules in neural networks for feature learning without bells
and whistles, which is compatible with many existing deep
neural networks and can be applied to widely-used neural net-
work backbones, e.g., convolutional neural networks and resid-
ual networks. The derived networks with Taylor architecture
are named Taylor Neural Networks (TNNs). In this section,
we will take plain convolutional networks as the backbone
for example; for residual networks, convolutional layers are
replaced with residual blocks in the Taylor architecture. TNN
consists of multiple Taylor Modules at different layers. In each
TM, to build the Taylor terms with high-order information, an
additional branch, i.e., TSCc, is connected with each layer.
With TSCh at each layer, all the TM outputs Fi in Equ. 6 are
summarized to generate the feature projection from the input,
as indicated in Equ. 5.

1) Formulation: As claimed in Sec. III-A, a conventional
neural network learns feature projections approximately with
the first-order, which is approximatively equal to the sum-
mation of the first two terms of Taylor Series. Instead, in

this paper, we formulate a general neural network architecture
with Taylor Series for encoding/learning a feature representa-
tion/projection F , which is employed in image reconstruction
tasks to restore a high-quality image Ŷ ,

Ŷ = up(F(x)) = up(
∑L

i=1
Fi) (5)

Fi =Wi ∗ Fi−1 ◦ (W0 ∗ x), i = 2, 3, · · · , L (6)

F1 =W1 ∗ x, (7)

where up(.) is the up-sampling function parameterized by
{WR, bR}, i.e., PixelShuffle [16] for SR. At each layer, the
feature map Fi is also named the Taylor map produced by the
Taylor Module (TM). In this section, bias parameters and the
activation function are omitted for simplifying the explanation.
◦ denotes element-wise product, and W0 is the parameter of
an additionally introduced convolutional layer.

2) Taylor Skip Connection: At each layer, a TM outputs
a Taylor map Fi, which is dominated by the input directly
due to our proposed Taylor Skip Connection (TSC) which
is different from other architectures with skip connections,
e.g., densely connected networks, because our architecture
aggregates the information flows from different order contents
of images at different layers. Specifically, the architecture
of TNN introduces two types of Taylor Skip Connection,
including Taylor-c skip connection (TSCc) and Taylor-h skip
connection (TSCh). At the i-th layer, TM first obtains a
response map (Wix) by convoluting the output of the previous
layer Fi−1 as the input (the convolutional layer can be replaced
with other layers or blocks e.g., residual blocks [8], [12],
residual in residual blocks [3]); then, TSCc introduces the
original input x into a TM with an element-wise product
operation and derives a Taylor map; TSCh aggregates the
information (Taylor map) of this layer and all the previous
layers with an addition operation.

For the i-th layer, we can recursively have the computation
of Taylor map Fi (indicated in Equ. 6) as follows,

Fi =Wi ∗ Fi−1︸ ︷︷ ︸
TSCh

◦ (W0 ∗ x)︸ ︷︷ ︸
TSCc

=Wi(Wi−1 ∗ Fi−2︸ ︷︷ ︸
TSCh

◦ (W0 ∗ x)︸ ︷︷ ︸
TSCc

)

︸ ︷︷ ︸
TSCh

◦ (W0 ∗ x)︸ ︷︷ ︸
TSCc

=Wi(Wi−1 · · · (W2(W1 ∗ x) ◦ (W0 ∗ x)) ◦ . . . (W0 ∗ x)).
(8)

As indicated in Equ. 8, the output feature map Fi is recursively
related with preceding layers similar to conventional CNN, but
introduces the high-order information with the aid of Taylor
skip connections.

C. Connection to Taylor Expansion

We will elaborately explain our Taylor neural network
architecture from the view of Taylor series approximation.

1) The network with one layer: We first consider the Taylor
Neural Network with only one layer in the backbone, whose
parameters are {W1, b}. According to Equ. 7, the output
feature map (Taylor map) of the backbone is F = b+W1 ∗x.
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Fig. 2. Illustration of the Taylor architecture. (a) is the Taylor architecture and (b) is its implementation. TNN is derived from our Taylor formulation in
Equ. 5 and has sequential TMs with TSCs. TSCc is utilized to introduce to derive the high-order terms and TSCh aggregates different order information from
different layers.
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(d) Taylor Neural Network (TNNc)
Fig. 3. Another two TNN variants. Following the TNN spirit (Equ.5-8), we provide three implements, including one in Fig. 2 (TNNa) and these two additional
variants (TNNb and (TNNc)). (a) and (b) show the architecture of (TNNb) that summarizes the outputs from each TM in the tail of the last TM, and (c) and
(d) show the architecture of (TNNc) that accumulates the output of the previous layer to that of the next layer.

Accordingly, this derived feature map can also described as
F = b+

∑
αijx(i,j).

2) The network with two layers: For a TNN with two layers
in the backbone, whose parameters are {b,W0,W1,W2}, its
output feature map (Taylor map) of the backbone is F =
b+W1 ∗x+W2(W1 ∗x)◦ (W0 ∗x). Because of the linearity
of the convolution operation, we have a simple alternative
formulation to understand TNN,

F = b+
∑

(i,j)∈R1

αijx(i,j)+

(
∑

(i,j)∈R12

wijx(i,j))(
∑

(e,k)∈R0

wekx(e,k))

= b+
∑

αijx(i,j) +
∑

βijekx(i,j)x(e,k).

(9)

αij and βijek are the network parameters learned in the
training process. R0, R1 and R12 represent the receptive
field of one or two convolutional layers with parameters
{W0,W1,W2}.

It is obvious that the final output feature of our proposed
network is similar to Equ. 4, and the parameters of each layer
just correspond to the partial derivatives of each order. It
means that we can train the network from samples to learn
the network parameters which can be analogous to the partial
derivatives of each order for image super-resolution. It is the
same case for TNN with more layers. Besides, the number of

layers can be freely determined, which represents the order of
Taylor expansion.

D. Two TNN variants

Following the spirit of TNN formulated in Equ. 5 ∼
8, another two architectures are devised to implement the
proposed TNN models, shown in Fig. 3.

Taylor Neural Network is formulated based on Taylor Series
in Equ. 5 ∼ 8, which facilitates the deep feature learning to
reconstruct a high-quality image in the image super-resolution
task. At the i-th layer, on one hand, its output Fi is directly
correlated with the input via TSCc; on the other hand, TSCh

connects it with subsequent layers to aggregate different high-
order information, which is analogous to Taylor expansion,
to approximate the desired function. With the increase of
layers, our Taylor architecture facilitates TNN progressively
approximating the desired function.

Following this spirit, we propose another two variants of
TNN, as shown in Fig. 3, which are all derived from our
Taylor formulation in Equ. 5. For convenience, the version
of TNN claimed in Sec.C is named as TNNa; these two
variants are named TNNb and TNNc, respectively. They have
a stacked structure with sequential Taylor Modules together
with the introduction of the input via TSCc, while one distinct
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difference is that they have different strategies to aggregate
the outputs from different layers via TSCh. TNNa, shown in
Fig. 2, summarizes the outputs from each TM in the tail of the
last TM. It can be considered that each TM generates different
high-order terms and the addition operation is conducted once.
TNNb, shown in Fig. 3, accumulates the output of the first
layer to the outputs of other layers, respectively. TNNc, shown
in Fig. 3, accumulates the output of the previous layer to that of
the next layer. Different from TNNa, TNNb and TNNc conduct
the addition operation at each layer, which is aggregating
different high-order outputs from the first layer to the current
layer. We mainly evaluate TNNa in the paper.

IV. EXPERIMENTS

In this section, we conduct comprehensive experiments to
evaluate the proposed method on two representative real-world
SR datasets. Our Taylor architecture of TNN can be applied
in various deep neural networks. Thus, for each task, we
choose those relevant state-of-the-art methods that are derived
from representative neural networks. Besides, we also conduct
experimental evaluations in the image enhancement task to
further verify the proposed method.

A. Settings

Dataset. 1) Image super-resolution: Real-world image
super-resolution exhibits greater challenges of heterogeneous
image degradation and complex degradation across different
camera devices than synthetic image degradation [4]. Thus,
in the paper, all the SR methods are evaluated on more
challenging real-world SR datasets, rather than synthetic SR
datasets. Two real-world SR datasets are considered, i.e.,
RealSR [22] and DRealSR [4]. RealSR [22] has 595 HR-
LR image pairs captured from two DSLR cameras. DRealSR
has 894 image pairs captured from two DSLR cameras. Each
training image is cropped in 192×192 patches.

Network Architecture. Several representative deep neural
networks are considered as the backbones for three tasks, in-
cluding conventional convolution networks, residual networks.
To embed the proposed Taylor network structure into each
backbone, a convolution layer is added to connect the input
with each layer by element-wise product. In the tail of the
network, an addition is performed to integrate the output
information from all the layers. Compared with the original
plain networks, the proposed Taylor structure just introduces
the simple computation of one convolution layer and basic dot
product with a trivial increase of parameters.

Implementation Details. In our proposed method, the size
of the convolution layers is set to be 3×3. The convolutional
layer which introduces the original input into TMs is the same
size as the first convolutional layer of the backbone. In the case
of RRDB with 23 Residual-In-Residual (RIR) dense blocks as
the backbone, the first 12 RIR blocks are used to extract basic
features and the subsequent 11 RIR blocks are transformed
into Taylor blocks with TSCs.

In our proposed network, TMs are made up of different
modules (e.g., convolutional layers, residual blocks [8], dense
blocks [10] and hourglass blocks [19]), respectively, which is

TABLE II
EVALUATION RESULTS OF MODELS WITH DIFFERENT LAYERS.

Method # Layer PSNR SSIM

SRResNet [12]

1 18.94 0.686
2 19.24 0.704
6 20.98 0.756

11 25.49 0.809
12 28.96 0.818
1 26.58 0.746
2 26.97 0.758

TNN (SRResNet) 6 27.56 0.777
11 28.95 0.814
12 29.07 0.822

determined by the backbone. In the case of HGSR [4], we
used the first hourglass (HG) module to extract basic features
and transformed the subsequent 5 HG blocks into Taylor
Module with TSCs. To be applicable on various networks,
we correspondingly introduce pooling layers and channel
conversion layers to complete the element-wise product if the
pooling layer is applied in the backbone or the channels of
different layers are inconsistent.

B. Image Super-Resolution

1) Comparison with state-of-the-art methods: For image
SR, we compare our method with several state-of-the-art
methods, including SRResNet [12], EDSR [2], RRDB [3] and
HGSR [4]. Notably, for a fair experimental comparison, all
the methods have been trained following the same training
settings, including training datasets. Similar to [2], EDSR
has 256 filters per convolutional layer; other approaches use
64 filters. For a fair comparison, the plain base model of
[4], HGSR without gradient weighted loss, is considered.
With the same configuration, our TNNs are implemented by
following the same configuration and only transforming their
layers or blocks into our Taylor modules. Table I shows
quantitative SR comparisons for ×2, ×3 and ×4 on two real-
world datasets. It is observed that our method achieves higher
performance than existing models at all scales on both datasets.
Especially, on ×2 enlargement, the Taylor network derived
from RRDB significantly improves the performance by 0.31dB
on RealSR [22] and 0.56dB on DRealSR [4], which indicates
the excellent effectiveness of our proposed method.

Comparison results of SR images on RealSR and DRealSR
are illustrated in Fig. 4. It is observed that our proposed TNNs
generate less over-smooth details and artifacts. For example,
in the second row of Fig. 4, more sharp edges of the building
are restored by our TNNs that take EDSR as the backbone,
while EDSR with the plain architecture presents the over-
fitting tendency. Particularly, false textures occur distinctly in
the derived SR image from RRDB.

2) Model Analysis: Our detailed analyses of the proposed
TNNs are conducted in the real-world image SR task.

Evaluation on the number of TMs. Considering that TNNs
follow the spirit of Taylor Series, we provide the evaluation
result on the number of TMs in Table II, to analyze the
effects of TMs for TNN. This evaluation is taking SRResNet
as the backbone. With the increase of the number of layers,
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TABLE I
COMPARISON RESULTS OF IMAGE SUPER-RESOLUTION ON REALSR AND DREALSR. VALUES IN BOLD INDICATES THE HIGHEST PERFORMANCE AMONG

ALL THE COMPARISON METHODS FOR A SCALE FACTOR.

Scale Method DataSet: RealSR [22] DataSet: DRealSR [4]
PSNR SSIM LPIPS PSNR SSIM LPIPS

SRResNet [12] 33.54 0.919 0.155 33.76 0.901 0.162
TNN (SRResNet) 33.83 0.921 0.149 34.12 0.905 0.160

HGSR [4] 33.62 0.920 0.142 33.97 0.901 0.157
×2 TNN (HGSR) 33.79 0.921 0.144 34.12 0.905 0.166

EDSR [2] 33.88 0.920 0.145 34.24 0.908 0.155
TNN (EDSR) 34.00 0.923 0.146 34.33 0.908 0.157
RRDB [3] 33.80 0.922 0.146 33.89 0.906 0.155
TNN (RRDB) 34.11 0.925 0.139 34.45 0.911 0.151

SRResNet [12] 30.65 0.862 0.228 32.47 0.862 0.269
TNN (SRResNet) 30.69 0.861 0.232 32.75 0.867 0.264

HGSR [4] 30.68 0.863 0.227 32.54 0.865 0.252
×3 TNN (HGSR) 30.76 0.865 0.222 32.79 0.867 0.257

EDSR [2] 30.86 0.867 0.219 32.93 0.876 0.241
TNN (EDSR) 30.89 0.866 0.219 32.99 0.872 0.247
RRDB [3] 30.72 0.866 0.219 32.79 0.873 0.242
TNN (RRDB) 30.92 0.867 0.218 33.03 0.875 0.241

SRResNet [12] 28.95 0.821 0.281 31.63 0.847 0.341
TNN (SRResNet) 29.11 0.822 0.287 31.76 0.849 0.332

HGSR [4] 29.12 0.824 0.284 31.79 0.850 0.314
×4 TNN (HGSR) 29.21 0.826 0.281 31.86 0.851 0.314

EDSR [2] 29.09 0.827 0.278 32.03 0.855 0.307
TNN (EDSR) 29.15 0.825 0.273 31.97 0.853 0.311
RRDB [3] 29.15 0.826 0.279 31.92 0.857 0.308
TNN (RRDB) 29.27 0.828 0.278 32.14 0.857 0.305

TABLE III
COMPUTATION COMPARISON WITH BASELINE METHODS ON THE REALSR DATASET.

×2
Method SRResNet TNN (SRResNet) HGSR TNN (HGSR) EDSR TNN (EDSR) RRDB TNN (RRDB)

Params (M) 1.40 1.41 39.41 39.41 40.73 40.74 16.66 16.66
MACs (G) 72.56 73.13 322.35 322.44 2044.69 2045.05 847.83 847.92

×3
Method SRResNet TNN (SRResNet) HGSR TNN (HGSR) EDSR TNN (EDSR) RRDB TNN (RRDB)

Params (M) 1.58 1.60 39.41 39.41 43.68 43.69 16.66 16.66
MACs (G) 85.73 86.3 341.35 341.44 2194.46 2194.82 866.83 866.92

×4
Method SRResNet TNN (SRResNet) HGSR TNN (HGSR) EDSR TNN (EDSR) RRDB TNN (RRDB)

Params (M) 1.55 1.56 39.45 39.45 43.09 43.10 16.70 16.70
MACs (G) 111.58 112.15 375.36 375.46 2522.58 2522.94 900.85 900.94

TABLE IV
ABLATION STUDY ON DIFFERENT NONLINEAR ACTIVATION METHODS ON

THE REALSR DATASET.

Method Activation PSNR SSIM LPIPS
SRResNet ReLU 33.54 0.919 0.155
SRResNet SiLU 33.75 0.904 0.148
SRResNet ELU 33.78 0.901 0.149
SRResNet Tanh 33.48 0.901 0.148
SRResNet SIREN [11] 15.09 0.482 0.920

TNN (SRResNet) ReLU 33.83 0.921 0.149

i.e., the number of TMs for TNN, a constant performance
improvement is observed for TNN. In particular, with the same
layers, TNN always outperforms the base model SRResNet in
the metrics of PSNR and SSIM.

Analysis on the high-order in TNN. To investigate dif-
ferent order information at different layers, we visualize the
generated SR images from the outputs of TMs at different
layers in Fig.5. With the same backbone as SRResNet, our
method recovers a relatively clear SR image when only using

features at the first layer, while in SRResNet this phenomenon
does not occur until the entire network is fully used. This can
attribute to our TSC, which connects the final output with
each layer and is beneficial for the gradient back-propagation
to each layer directly. With the increase of layers and the
order, the SR images of our method become better and better,
which is analogous to the details brushed up layer by layer.
Our TNNs provide an appealing strategy to learn high-order
image information for image super-resolution. Furthermore,
Compared with nonlinear activation methods to incorporate
high-order information, TNN still presents a superior perfor-
mance: 28.95dB (SRResNet) vs. 23.80dB (SIREN) vs 29.11dB
(TNN), shown in Table IV. Instead, SRResNet with SIREN
has a significant performance drop.

Analysis on the number of parameters and Multi-
adds. Compared with baselines, our Taylor design has one
additional convolutional layer with weights W0 and introduces
a very slight increase of parameter number. This is empirically
demonstrated in Table III. For example, parameter numbers are
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HR TNN(SRResNet) TNN(EDSR) TNN(HGSR) TNN(RRDB)

LR SRResNet EDSR HGSR RRDB

HR TNN(SRResNet) TNN(EDSR) TNN(HGSR) TNN(RRDB)

LR SRResNet EDSR HGSR RRDB

LR SRResNet EDSR HGSR RRDB

HR TNN(SRResNet) TNN(EDSR) TNN(HGSR) TNN(RRDB)

LR SRResNet EDSR HGSR RRDB

LR SRResNet EDSR HGSR RRDB

Fig. 4. Comparison of SR results with state-of-the-art methods on RealSR (the first image in each row) and DRealSR (the second image in each row).

Layer: 1 Layer: 2 Layer: 6 Layer: 11 Layer: 12

SR
R
es
N
et

(18.96dB) (19.24dB) (20.95dB) (25.15dB) (27.71dB)

TN
N

(25.87dB) (26.58dB) (26.72dB) (27.47dB) (27.88dB)

Order: 1 Order: 2 Order: 6 Order: 11 Order: 12

Fig. 5. Visualization of SR results at different layers. With the same backbone to SRResNet, our TNN reconstructs better and better SR results with the
increase of layers and the learned high-order information is beneficial for image super-resolution.
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DPEDOriginal TNN (DPED) GT

Fig. 6. Image enhancement results of DPED and our TNN with the same backbone as the DPED method.

TABLE V
PERFORMANCE OF THREE TNN VARIANTS.

TNNa TNNb TNNc

PSNR SSIM PSNR SSIM PSNR SSIM
29.11 0.822 29.06 0.821 29.07 0.821

43.09M (EDSR) vs. 43.10M (TNN(EDSR)) and 16.70M (RRDB)
vs. 16.70M (TNN(RRDB)).

Evaluation on different activation functions. As suggest-
ed, we have provided an ablation study on different activation
functions, as shown in Table IV. In comparison with ReLU, it
is observed that SiLU and ELU bring about 0.2dB performance
improvement, Tanh has a slight decrease, but SIREN [11]
presents a significant performance drop. The main reason is
possibly that, although it is not linear, its periodic property is
not beneficial to reconstruct image details under the complex
image degradation in the image super-resolution task; or, it is
not well deployed or behaved under SRResNet for the image
super-resolution task.

Analysis on different TNN variants. In Table V, we
provide the experimental comparison results of TNN variants.
With the backbone of SRResNet, TNNa outperforms the other
TNN models on the RealSR dataset; TNNb and TNNc have
a similar performance. The reason is that TSCh in TNNa

facilities directly the loss back-propagation to each layer. Thus,
TNNa is adopted in our work.

Taylor Maps. We further analyze the learned Taylor maps at
different layers, as shown in Fig. 1. The learned feature maps
by SRResNet [12] are also provided in Fig. 1. It is observed
that our Taylor feature maps present strong activations for
image details at different layers. Instead, those from SRResNet
are prone to flat regions that are easier to reconstruct and grad-
ually activate fewer details with the increase of layers. This
can attribute to the simply learning of image residual, which
would drive the model to fit the easy visual components [4],
and thus is incapable of effectively learning more details for
difficult visual components, e.g., textures.

C. Image Enhancement

To further evaluate our proposed TNN, we also conduct
experiments of image enhancement comparing our method
with the DPED method on DPED dataset. DEPD [25] is a
large-scale dataset for image enhancement, aiming to improve

TABLE VI
COMPARISON RESULTS OF IMAGE ENHANCEMENT ON THE DPED

DATASET.

Dataset Method
DPED

[25]
TNN
(DPED)

DPED8
[25]

TNN
(DPED8)

Iphone PSNR 20.08 20.55 20.47 20.73
SSIM 0.920 0.920 0.920 0.921

Blackberry PSNR 20.07 20.23 20.14 20.26
SSIM 0.933 0.933 0.934 0.933

Sony PSNR 21.81 21.97 21.92 22.03
SSIM 0.944 0.946 0.945 0.946

low-quantity phone images with respect to high-quantity D-
SLR images. DEPD is commonly used for NTIRE image
enhancement challenges [26]. It has over 6K photos taken
synchronously by a DSLR camera and 3 low-end cameras of
smartphones in a wide variety of conditions.

PSNR and SSIM results are reported in Table VI. The
backbone of DPED [25] is derived from a residual network
with three residual blocks. Due to few works with typical
architectures of the neural network on DPED dataset, for
better comparison, we deepened the network of DPED into
an eight-layer residual network, named DPED8. DPED8 and
our TNN based on it are trained on the same settings as
DPED. As shown in Table VI, our TNN achieves higher PSNR
performance on three mobile phone datasets, i.e., Iphone,
Blackberry and Sony. On Iphone, our TNN achieves 0.47dB
PSNR improvement over DPED. Similar improvements are
also significant on the other two datasets.

Visualization results are shown in Fig. 6. It is observed
that DPED changes the color in the image region marked in
red while our TNN restores similar color to the ground-truth
(GT). In addition, the enhanced images by our TNN have more
reconstructed details of the image.

V. CONCLUSION

In this work, we establish a Taylor architecture to explore
the high-order information of images in neural networks and
propose Taylor Neural Networks for feature learning in real-
world image super-resolution. Without any image processing
for extracting high-order or high-frequency contents in images,
our TNNs build Taylor modules for Taylor maps with the
different high-order attention information, and leverage Taylor
Skip Connections to aggregate those Taylor maps from differ-
ent layers for reconstructing more image details. The proposed
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Taylor architecture can be flexibly applied to various existing
networks in a simple manner for the introduction of high-order
information, which provides an insightful research topic for
feature learning in image reconstruction. The proposed TNNs
are evaluated under different existing networks as baselines
on two real-world SR benchmarks, and comprehensive exper-
imental results demonstrate the superiority of our TNNs.
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