
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021 5379

Deductive Reinforcement Learning for Visual
Autonomous Urban Driving Navigation

Changxin Huang , Graduate Student Member, IEEE, Ronghui Zhang, Meizi Ouyang, Pengxu Wei ,

Junfan Lin, Graduate Student Member, IEEE, Jiang Su, and Liang Lin , Senior Member, IEEE

Abstract— Existing deep reinforcement learning (RL) are
devoted to research applications on video games, e.g., The
Open Racing Car Simulator (TORCS) and Atari games. How-
ever, it remains under-explored for vision-based autonomous
urban driving navigation (VB-AUDN). VB-AUDN requires a
sophisticated agent working safely in structured, changing, and
unpredictable environments; otherwise, inappropriate operations
may lead to irreversible or catastrophic damages. In this work,
we propose a deductive RL (DeRL) to address this challenge.
A deduction reasoner (DR) is introduced to endow the agent
with ability to foresee the future and to promote policy learning.
Specifically, DR first predicts future transitions through a para-
meterized environment model. Then, DR conducts self-assessment
at the predicted trajectory to perceive the consequences of current
policy resulting in a more reliable decision-making process.
Additionally, a semantic encoder module (SEM) is designed to
extract compact driving representation from the raw images,
which is robust to the changes of the environment. Extensive
experimental results demonstrate that DeRL outperforms the
state-of-the-art model-free RL approaches on the public CAR
Learning to Act (CARLA) benchmark and presents a superior
performance on success rate and driving safety for goal-directed
navigation.

Index Terms— Autonomous urban driving, deductive reason-
ing, deep neural networks, reinforcement learning (RL).

I. INTRODUCTION

V ISION-BASED autonomous urban driving navigation
(VB-AUDN) is rather under-explored to endow a robotic

car/agent with the ability to form long-term driving strate-
gies [1], particularly in changing weather conditions and vari-
ous complex scenarios [2]–[4]. Considering that inappropriate
driving strategies or operations would invite irreversible or
disastrous damages, it is desirable to explore how VB-AUDN

Manuscript received July 30, 2020; revised March 23, 2021 and June 15,
2021; accepted August 11, 2021. Date of publication September 14, 2021;
date of current version December 1, 2021. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2020AAA0109700 and in part by the National Natural Science Foun-
dation of China under Grant U1811463, Grant 61836012, Grant 61876224,
Grant 62006253, Grant U181146, Grant 61836012, and Grant 61976233.
(Corresponding author: Pengxu Wei.)

Changxin Huang and Ronghui Zhang are with the School of Intelligent
Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China
(e-mail: huangchx53@mail2.sysu.edu.cn; zhangrh25@mail.sysu.edu.cn).

Meizi Ouyang, Pengxu Wei, Junfan Lin, and Liang Lin are with
the School of Computer Science and Engineering, Sun Yat-sen Uni-
versity, Guangzhou 510275, China (e-mail: ouymz@mail2.sysu.edu.cn;
weipx3@mail.sysu.edu.cn; linjf8@mail2.sysu. edu.cn; linliang@ieee.org).

Jiang Su is with DMAI Great China, Guangzhou 511457, China (e-mail:
sujiang@dm-ai.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3109284.

Digital Object Identifier 10.1109/TNNLS.2021.3109284

methods ensure that a car agent could act effectively and safely
in structured, changing, and unpredictable environments [5].

Current research studies mostly focus on the following
approaches: modular pipelines (MPs), imitation learning (IL),
and reinforcement learning (RL). MP methods disassemble the
VB-AUDN task into a series of easier subproblems, such as
scene parsing, path planning, and decision making [6], [7].
Although this strategy makes MPs more interpretable, those
MPs heavily depend on intermediate representations, which
is hardly applicable for complex scenarios. IL methods aim
to mimic human drivers’ driving behavior through end-to-end
supervised learning [8]. They employ convolutional neural net-
works (CNNs) to learn the association between original input
and control signal based on a mass of driving demonstrations.
It requires a huge amount of driving demonstrations to cover
the various driving situations which are usually impractical.

Different from those approaches, Deep RL approaches allow
the agent to learn the driving policy from exploration data
without expert demonstration, which is more suitable for
practical applications. Deep RL approaches are rooted in
Markov decision process (MDP) [9], which is pioneered by
the work of Bellman [10]. RL agents optimize the policy based
on the empirical data gathered from their interactions with the
environment. It is an exploration-and-exploitation process that
reinforces favorable actions while avoiding negative ones that
bring the agents low rewards. Existing RL-based VB-AUDN
research studies mainly adopt model-free RL (MFRL) to train
the agents without explicitly modeling the environment [1],
[11], [12]. However, MFRL requires to interact with the
environment to obtain millions of data samples to optimize
the driving strategy, which is data-inefficient and hinders its
applications to complex real-world tasks.

Compared to MFRL, model-based RL (MBRL) approaches
are typically more data-efficient [13], [14]. These methods
apply an environment model to predict the future and search
for favorable outcomes while avoiding the adverse conse-
quences by trial-and-error in realistic environments. Since
it is intractable to obtain a ground-truth forward dynamics,
approximating a forward dynamics model is regarded as a
feasible solution [15]–[18]. Nevertheless, it is challenged by a
high-dimensional state space (e.g., pixel-level image), which
leads to the difficulty of learning forward dynamics [19], [20].
Due to these approximation errors [18], MBRLs usually fail to
achieve competitive performance in comparison with MFRLs.

Essentially, these RL-based approaches optimize driving
policy by maximizing long-term cumulative rewards,
which may cause the agent to be insensitive to unsafe

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9588-064X
https://orcid.org/0000-0002-2190-0767
https://orcid.org/0000-0003-2248-3755

5380 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Fig. 1. Overview of our proposed DeRL approach. DeRL consists of a policy network (actor network), a value function (critic network), and DR. The goal
of SEM is to learn the driving scenario relevant abstract representations, which is robust to changes in weather and circumstances.

intermediate situations [21], [22]. It is severely problematic
for safety-critical VB-AUDN tasks. Moreover, the scenarios
of VB-AUDN are far more complicated than those
of many prevalent tasks, e.g., The Open Racing Car
Simulator (TORCS) [23] and Atari game [24]. VB-AUDN
tasks require the agent to handle the complex visual
perception such as the complex surroundings and changing
weather conditions [5]. Therefore, it is desirable for RL to
deductively reason about the future transitions and reactively
navigate with effective responses to unforeseen and complex
circumstances.

To address these issues, in this article, we propose deductive
RL (DeRL) for the VB-AUDN tasks to mimic deductive
human intelligence, which is a combination of model-free
and MBRL. We employ deep deterministic policy gradient
(DDPG) [25] to update the driving policy in a model-free
branch; and propose a deduction reasoner (DR) further
improves the driving policy in a model-based branch, as shown
in Fig. 1. We utilize the model-based branch to assess the
value of the policy. Then the value is used as guidance for
policy optimization. Since DR only executes during policy
optimization, planning is no longer necessary in the testing
stage. To handle the high-dimensional complex scenarios
and alleviate the approximation errors, we further propose
a semantic encoder module (SEM) to learn low-dimensional
driving representations from the raw image observations,
which accords with the learning rule (behavior) of the human
brain [26], [27]. The compact representation allows the
model-based agent to infer in a more robust and effi-
cient way. Overall, we summarize our main contributions as
follows.

1) We propose a DeRL approach to promote the per-
formance of VB-AUDN tasks. As far as we know,
our proposed DeRL is the first one for vision-based
self-driving in a deep RL framework without human
demonstration.

2) We introduce a DR to look forward from the cur-
rent state and to evaluate the value of predicted
trajectory to improve the policy learning. DR first pre-
dicts the future transitions through a learned environ-
ment/dynamics model. It then conducts self-assessment
at the predicted trajectory to realize the consequence

of current operations, which is combined with the
model-free branch to optimize the driving policy.

3) We deploy a novel SEM to learn a low-dimensional
intermediate representation from the raw images, pro-
viding driving relevant information for driving in
urban environments. Our SEM effectively mitigates the
approximation errors of the learned environment model
and inefficient exploration.

4) Compared with related algorithms without demonstra-
tion on the public CAR Learning to Act (CARLA)
benchmark [28], the proposed method achieves state-
of-the-art performance, demonstrating the superiority of
our proposed model for handling a variety of urban
driving scenarios including challenging circumstances
and weather conditions. Especially, the traffic infraction
results show that our agent can drive automatically in a
safer way.

The rest of this article is organized as follows. In Section II,
we briefly introduce the related research directions to VB-
AUDN, including MPs, imitation learning (IL), and RL.
Section III introduces the background of RL. The proposed
DeRL is elaborated in Section IV. Experiment results and
discussions are presented in Section V. Finally, Section VI
concludes this article.

II. RELATED WORK

VB-AUDN approaches can be defined as learning a function
that maps vision inputs (images) to driving control outputs.
Current relevant researches can be approximately divided into
three categories: MPs, IL, and RL. We elaborate these three
categories for VB-AUDN approaches in the following.

A. MP Based Approaches

MPs decouple the autonomous driving task into multi-
ple subcomponents and solve each subproblem separately.
Chen et al. [7] split the autonomous driving into two stages,
i.e., perception stage for learning driving affordance via CNNs
and control stage for mapping affordance to actions according
to ad hoc driving rules. Dosovitskiy et al. [28] improve
the perception performance by learning a driving semantic
segmentation map and a list of way-points. Though MPs are
relatively interpretable, the intermediate submodule divisions
rely strictly on human expert analyses, which is extremely

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DERL FOR VISUAL AUTONOMOUS URBAN DRIVING NAVIGATION 5381

rigid for handling changing and unpredictable driving
scenarios.

B. IL Based Approaches

IL approaches, pioneered by Pomerleau [29], skip the
intermediate step of formulating an explicit driving model and
learn the driving skills directly from collected demonstrations.
In recent years, the success of deep learning on various
computer vision tasks [30]–[34] motivates researchers to adopt
deep ConvNets to imitate human driving skills [8], [35]–[38].
However, applying IL directly to a complicated autonomous
driving system brings about other challenges. First, it is limited
by the requirement of extensive human experiences. For exam-
ple, Codevilla et al. [38] collected more than 400 h of driving
demonstrations from CARLA environment [28] using more
than 200 GPU-days. Nevertheless, this is impractical in real-
world applications. Besides, to create abnormal situations such
as collisions and/or going off the road (synthesizing the worst
cases), learners are exposed to synthesizing data by adding
perturbations to the experts [39]. Notably, the multimodal
distributions of data will slow the training process [40]; the
human drivers have their driving preferences subjectively and
may not even drive in an optimal way for providing reasonable
data. Therefore, there is no guarantee that every action of the
expert driver is optimal.

C. RL Based Approaches

In order to address the aforementioned issues of MPs
and ILs, many research studies attempt to learn autonomous
driving policies following an RL framework [41]–[44].
RL system optimizes driving policy in a reasonable way by
exploration and interaction with a simulation environment.
It encourages favorable movements and punishes improper
ones to learn an optimal policy. However, urban driving is
more difficult than most previous tasks such as lane following
or obstacle avoidance.

Dosovitskiy et al. [28] have claimed that the performance of
vanilla Asynchronous advantage actor–critic (A3C) [45] is so
poor and far from meeting the requirements of practical appli-
cations. The main reason is that conventional RL often falls
into the local optima due to large action spaces. One effective
solution to this dilemma is the learning of better exploration
in the context of human demonstrations. Liang et al. [12]
proposed the controllable imitative RL (CIRL) that uses
human demonstrations to initialize the policy networks of
DDPG [25], which effectively alleviates the low exploration
efficiency for the large continuous action space. However,
it relies on human driving data to warm up the RL policy.
Another challenge is that MFRL algorithms optimize driving
policy by maximizing long-term cumulative rewards, which
may cause the agent insensitive to the unsafe intermediate
situation [21], [22], which is problematic for autonomous
driving systems, as unsafe policies could damage the hardware
or invite harm to humans.

Recent works [18], [46]–[48] have demonstrated the effec-
tiveness of combining model-based and model-free algorithms
on robotic tasks. For example, Nagabandi et al. [18] used
the learned environment/dynamics model and the model pre-
dictive control (MPC) to gather example trajectories, which

are used as “expert” trajectories to train a neural network.
Then, the neural network is considered as an initial policy
for an MFRL algorithm. This environment model increases
the amount of internal simulation for the agent. However,
the model-based branch and the model-free branch are trained
separately, which is laborious and cumbersome in prac-
tice. Pong et al. [46] introduced temporal difference models
(TDMs), a family of goal-conditioned value functions that
can be trained with model-free learning and used for model-
based control. However, TDMs can only be used for training
goal-conditioned value functions. Racaniére et al. [47] and
Wang et al. [48] construct implicit plans to obtain rollout
trajectories by using a learned environment/dynamics model
and a model-free policy. The rollout trajectories are then
simply encoded into policy networks as additional infor-
mation. Therefore, the model-based branch only adds addi-
tional information but has no clear guidance for policy
optimization. In addition, it is time-consuming since they
have to do the planning process every step at the testing
stage.

The proposed DR is a model-based method, however,
different from the aforementioned above work, the rollout
trajectory generated from the environment/dynamics model is
used for the value estimation, called self-assessment value. The
self-assessment value can also optimize the policy network
through policy gradient. In this way, when the learned policy
is used to predict the action, no planning is required. The usage
of the environment/dynamics model in this article is similar
to the value prediction network (VPN) [49]. However, VPN
relies on discrete states and action spaces and only works in
some simple scenarios, i.e., 2-D grid-world and Atari [50].
Our DeRL applies DDPG as the basic RL agent, which can
handle continuous action space.

III. PRELIMINARIES

In this section, we will briefly introduce the RL method for
VB-AUDN.

A. Notations

Specifically, autonomous driving is formulated as an MDP
problem. A standard RL includes an agent interacting with an
environment E and receiving a reward r at every time step t
in MDP. MDP can be denoted as the tuple (S,A,P,R, γ),
where S is the state space, A is the action space, P : S×A �→
S is the transition probability function, and R is the reward
function, γ ∈ (0, 1] is the discount factor.

At every time step t , the vehicle agent observes the state st ∈
S, and takes an action at according to a policy π : at = π(st).
Then, the agent transits to the next state st+1 = P(st+1|st , at)
and receives a reward rt = R(st , at) as well as a new state
st+1 ∈ S from the environment. The return from a state st as
the cumulative γ -discounted reward:

�T
k=t γ k−tR(sk, ak). The

RL objective is to optimize the policy π by maximizing the
expected return from the initial state. According to Bellman
Equation, the expected return starts from state st , takes action
at , and follows policy π , which is denoted as action-value
function Qπ (st , at), i.e., Q-function:

Qπ (st , at) = �rt ,st+1∼E
�
r(st , at) + γ Qπ (st+1, π(st+1))

�
. (1)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

5382 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

B. Deep Deterministic Policy Gradient

DDPG is a representative MFRL method. Considering its
remarkable performance for the continuous control problem,
DDPG [25] is utilized as our basic model. It consists of a
Q-function (the critic) and a policy function (the actor) to
learn a deterministic continuous policy. The actor π and the
critic Q are learned with deep function optimization, which is
parameterized by θπ and θ Q , respectively.

To avoid the agents falling into a local optimum and further
improve the exploration efficiency, an Ornstein–Uhlenbeck
(OU) noise is introduced to the policy. The output action
can be expresses as: at = π(st) + Nt , where Nt ∈ NOU.
It utilizes the experience replay strategy which collects the
experience tuples (st , at , rt , st+1) stored in a replay buffer B
during exploration. In VB-AUDN, these experience tuples are
actually driving trajectory tuples. In training stage, the training
data are sampled from the replay buffer to optimize the policy.
DDPG approximates Q-function by a critic network, which is
updated by minimizing the Bellman loss

L
�
θ Q

� = �st ,at ,rt ,st+1∼B
�
yt − Q

�
st , at |θ Q

��
(2)

where yt = rt + γ Q(st+1, π(st+1)|θ Q) is the target value.
Then the actor learns a Q-optimal driving policy: π(s) =
argmaxa Q(s, a) and optimizes the policy parameters by using
the sampled policy gradient

∇θπ J

≈ �st ,at ,rt ,st+1∼B

�
∇a Q

�
s, a|θ Q

���
s=st ,a=π(st)

∇θπ π(s|θπ)|s=st

	
.

(3)

For stabilize training, DDPG introduced a target actor
network θπ �

and a target critic network θ Q�
, respectively, which

are used for calculating the target values. The target network
is updated through “soft” update [25]: θ � = τθ + (1 − τ)θ �,
where τ is the update rate.

C. Asymmetric Actor-Critic

Inspired by Pinto et al. [51], we revamp the DDPG algo-
rithm into an asymmetric actor–critic structure that uses partial
observation ot to train the actor and exploit access to the
full state st to train the critic. Thus, the policy comes into:
at = π(ot). The full-state st contains eight measurements
obtained from sensors of the CARLA simulator, illustrated
in Fig. 2. The observation ot includes the images (taken by a
single monocular forward-facing camera mounted in the center
of the roof at the front of the vehicle) and the forward speed
v f . Only the observation ot is used to produce the control
signal in the testing stage.

IV. DERL FOR VB-AUDN

In this section, we will first provide an overview of our
proposed model for VB-AUDN in Section IV-A. We then
introduce an SEM to extract effective feature representation
from raw images in Section IV-B. The details of our DeRL
are elaborated in Section IV-C. Finally, we describe the reward
function in Section IV-D and our DR that contributes to policy
learning in Section IV-E.

Fig. 2. Illustration of the full state information in DeRL.

A. Overview

To handle the high-dimensional complex scenarios in
VB-AUDN, we first propose an SEM to learn a compact
representation from the raw image, which is described in
Section IV-B. Intuitively, our SEM takes a raw image as input
and extracts the driving semantic information into a vector ot

for RL policy πt . The semantic representation can accelerate
the RL training and alleviate the approximation errors of the
environment model at the same time.

Our DeRL is built on DDPG [25], which is one of the
actor–critic MFRL algorithms. The core of DeRL is that we
introduce a deductive reasoner that enables policy to be learned
in a model-based manner. Thus, it inherits the advantages of
MFRL and MBRL. As shown in Fig. 1, the environment model
is regarded as the internal model of the DR. It aims to predict
the next state st+1 and reward rt according to the current state
st and action at . The environment model and reward design are
introduced in Sections IV-C and IV-D, respectively. With the
environment model and current policy, the following trajecto-
ries can be predicted. Meanwhile, DR evaluates the predicted
trajectories by summing the estimated rewards, called self-
assessment Qde. Finally, the policy learning is guided by both
Qde and model-free branch Qcritic, which is elaborated in
Section IV-E.

B. Semantic Encoder Module

A car agent observes a 2-D image from the environment
at each time step. Images could be fed directly into the RL
algorithm. However, a raw image generally contains some
redundant contents, such as the detailed features of the build-
ings on the roadside and the color/brightness features brought
by the weather. These features are useless for the agent to
make driving decisions and even introduce noises. Semantic
segmentation extracts the important information in an RGB
image, resulting in a more structured and robust represen-
tation of a scene. As a result, semantic segmentation is a
prevalent option for state representations in many vision-based
control tasks [52]–[54]. These approaches use the predicted
segmentation (PS) image as the input of RL. However, it is not
efficient to deploy an RL algorithm on those high-dimensional
images [1]. The motivation of the proposed SEM is more
similar to [54]. However, SEM aims to extract a compact
representation instead of directly using segmentation images
as the input of the RL policy. This allows the RL model to be
trained more effectively.

Specifically, our SEM roots in a typical auto-encoder
model. Inspired by Xu et al. [5], we consider the semantic

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DERL FOR VISUAL AUTONOMOUS URBAN DRIVING NAVIGATION 5383

segmentation prediction as a side task to improve the abstract
representation, which performs motion prediction. To further
improve the efficiency of the feature representation, the seman-
tic segmentation only retains eight driving task-relevant cat-
egories: road, lane-marking, sidewalk, vehicle, pedestrian,
pole, traffic sign, and others (background). Intuitively, SEM
encodes an observed image into a low-dimensional abstract
representation, which is decoded into a semantic segmentation.
Our SEM aims to extract low dimension abstract representa-
tion with identical distribution from polymorphic distribution
images. This encoder process is based on the hypothesis that
although the appearance of images varies greatly in different
weather conditions or scenes, their semantic segmentations
remain consistent. Thus, the learned representations are more
robust and insensitive to the variation of weather conditions or
scenes.

Variational autoencoder (VAE) [55] can be utilized to extract
abstract representation to improve data efficiency in the train-
ing process [1], [27]. However, training a vanilla VAE as a
standalone model has some limitations. The first limitation is
that VAE encodes all information of the observation, which
contains task-irrelevant portions. For example, it encodes
unimportant detailed grassplots or trees far away from driving
roads. The second limitation is that the abstract representation
learned by VAE is insensitive to scenario changes. Due to the
random sampling of the latent vector, equivalent to adding
noise to the encoding, the latent vector encoded by VAE
is insensitive to the minor changes of the input, especially
the position of perspective. This is also demonstrated in
Section V-B.

C. Deduction Reasoner

Our DR employs an environment model to enable the
agent to infer the future trajectory, which ensures the agent
with cautiousness and reliable decision-making. Specifically,
DR first predicts the future transitions through a parameterized
environment model. DR then conducts self-assessment at the
predicted trajectory to perceive the consequence of current
operations, presented as deductive value Qde. Finally, Qde is
regarded as a part of the value function to facilitate the driving
policy learning.

1) Learning Environment Model: The environment model
with the purpose of predicting the next state and estimating
the reward that can be obtained. Thus, it contains a transition
model T and reward model ξ , as illustrated in Fig. 3. The
transition model accepts the observation ot and action at at the
time step t to predict the next observation ôt+1. The reward
model will estimate the reward of the transition (ot , at , ot+1).

The environment model is trained using the sequence of
tuples (ot , at , rt , ot+1) sampled from replay experience.
Different from [27] that learns an internal environment model
using recurrent neural network (RNN) model, an architecture
with three fully-connected layers can perform well in our task.
The most important temporary information in driving tasks is
the speed of the car. However, speed is a known condition
in this task. Therefore, using an RNN may extract the redun-
dant information, while simply fully connected architecture is
enough.

Fig. 3. Environment model accepts the observation ot and action at at time
step t to predict the next observation ôt+1 and the reward rt .

The transition model can be formulated as: ôt+1 =
T (ot , at), and the loss function is defined as

LT
�
θT

� = ||ot+1 − T (ot , at)||2. (4)

The reward model can be formulated as: r̂t =
ξ(ot , at , ôt+1), and the loss function is defined as

Lξ

�
θξ

� = ||rt − ξ(ot , at , ot+1)||2. (5)

2) Deduction in Mind: The internal process of deduction
module is shown on the right of Fig. 1. We assume that the
agent received the observation ot at time step t , the deduction
module will first predict an action ât based on the current
policy. Then the environment model will predict the next
observation ôt+1 as well as the corresponding reward r̂t .
The deduction process will continue with h steps, which
denotes the deductive depth. Thus, the deductive process can
be formulated as

ôt+k =

T (ot , ât), k = 1

T (ôt+k−1, ât+k−1), 1 < k ≤ h.
(6)

The reward on the predictive trajectory for every time step
is formulated as

r̂t+k−1 =

ξ(ot , ât , ôt+1), k = 1

ξ(ôt+k−1, ât+k−1, ôt+k), 1 < k ≤ h.
(7)

Therefore, the self-assessment value is the sum of estimated
rewards for each step in the deductive trajectory, which is
defined as

Qde(ot) =
h�

k=1

βk−1r̂t+k−1 + βh V (ôt+h) (8)

where V (ôt+h) is the state value of ôt+h and β is the discount
factor. For MBRL, the performance will drop result from
approximated environment model error: when the environment
model cannot be learned perfectly, the final policy can highly
be suboptimal [18], [46]. Different from goal-reached tasks,
autonomous driving demands short-term performance/safety
for making a high-efficiency decision/prediction. For this
consideration, we set V (ôt+h) = 0 and only accumulate the
estimated rewards in the deductive roll-outs to improve the
driving policy. Meanwhile, we incorporate a short-term deduc-
tion module and only limit the deductive depth to a relatively
small number, controlling the cumulative approximation errors
without great drift. Finally, Qde will be used as a constraint
condition to guide driving policy learning.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

5384 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

D. Designing Reward by Driving Commonsense

We design the reward function to learn driving policy
endowed with commonsense like human drivers. The com-
monsense reward consists of four subrewards with regards to
speed, car pose, position and collision. Specifically, the sub-
reward about speed is defined as

rspeed =

v f (t), v f ≤ 20

40 − v f (t), v f ≥ 20
(9)

where v f (t) (in km/h) is the forward speed of the car at time
step t. We encourage the agent to drive at a safe and rational
speed.

The rotation angle ϕ reflects the pose of the car which
is one of the important indicators for assessing whether the
car is driving normally. To urge the car driving along the
lane and publish the abnormal steer, the rotation reward
rrotation = −v f (t) × tan ϕ when the direction command c is go
straight, and rrotation = −20 when the car is in the intersection
and steer is in opposite direction to c.
Meanwhile, to encourage the car to drive as close as possible
to the middle of the road, the position reward is defined
as

rposition =
⎧⎨
⎩ 20 ×

�
1 − d

w

�
, on − road

−100, off − road
(10)

where d is the distance between the center of the agent and the
middle of the track, and w is the width of the road. “off-road”
represents the vehicle overlaps with the other lane or sidewalk.
Finally, the collision reward rcollision is set as −100 for having
collision and driving. Thus, the total reward rtotal is computed
as

rtotal = rspeed + rrotation + rposition + rcollision. (11)

E. DeRL for VB-AUDN

The state-value Qcritic from DDPG critic and the
self-assessment value Qde from DR are finally weighted and
summed to assess the performance of the actor

Q(st , at) = Qcritic(st , at) + ωQde(ot) (12)

where ω is the weight parameter of Qde. The driving policy
is optimized by the policy gradient from two components

∇θπ J = ∇θπ Jcritic + ω∇θπ Jde (13)

where ∇θπ Jcritic and ∇θπ Jde denote the policy gradient calcu-
lated from critic of DDPG and DR, respectively. According
to (3), model-free policy gradient ∇θπ Jcritic can be calculated
by following equation:

∇θπ Jcritic = 1

N

N�
i=1

∇a Qcritic
�
si , a = π(oi)|θ Q

�∇θπ π(oi |θπ).

(14)

Note that the input of Qcritic is the full state si , while the
input of policy is the partial observation oi . This is described
in Section III-C. The policy gradient from DR can also be

obtained by applying the chain rule to the expected return
from the start distribution with respect to the actor parameters

∇θπ Jde = 1

N

N�
i=1

∇a Qde
�
oi , a = π(oi)|θT , θξ

�∇θπ π(oi |θπ).

(15)

V. EXPERIMENTS

To verify the effectiveness of the proposed method,
we conduct extensive experiments quantitatively on the public
CARLA benchmark, show comprehensive qualitative results
and provide further analyses on our proposed DeRL.

The video of testing results shows several navigation exam-
ples of our agent for different weather conditions and scenes,
which are publicly available.1

A. Experiment Setting

1) Simulation Environment: We train and test our car agent
on the CARLA simulator [28]. CARLA provides a high
fidelity urban driving environment with various traffic situ-
ations. It has four tasks defined as follows:

1) Straight: Destination is straight ahead of the starting
point, and there are no dynamic objects in the environ-
ment. The average driving distance to the goal is 200 m
in Town01 and 100 m in Town02.

2) One Turn: Destination is one turn away from the starting
point, and there are no dynamic objects. The average
driving distance to the goal is 400 m in Town01 and
170 m in Town02.

3) Navigation: No restriction on the location of the desti-
nation point relative to the starting point, no dynamic
objects. The average driving distance to the goal is
770 m in Town01 and 360 m in Town02.

4) Navigation With Dynamic Obstacles: It is the same as
the previous three tasks, but with dynamic objects (cars
and pedestrians).

For a fair comparison with other state-of-the-art methods,
following the same settings, we train the model in Town01 and
test it in Town02. Maps of Town01 and Town02 are illustrated
in Fig. 4. Weather conditions in the training set contain the
clear day, clear sunset, daytime rain, and daytime after rain,
while those in the testing set have cloudy daytime and soft
rain at sunset that is never used during training stage. Some
example images for different weathers are also shown in Fig. 4.

2) Implementation Details:
a) Learning abstract representation: The SEM architec-

ture is shown in Table I, it consists of five convolutional
layers of kernel shapes (5, 5, 3, 3, 3) and output channels
(32, 64, 128, 256, 64). All strides are set as 2. The output
of the convolution stack is then fed into the fully connected
layer to produce the low-dimensional latent representation
vector with a length of 200. The SEM is trained with
image-segmentation pair collected from CARLA under autopi-
lot mode. The dataset contains 110 thousand images and the
corresponding ground-truth semantic segmentation. To further

1https://1drv.ms/u/s!Aj4kXYOGgb3ua2VurneLrOskNAw?e=Brhqfr

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DERL FOR VISUAL AUTONOMOUS URBAN DRIVING NAVIGATION 5385

Fig. 4. Example observations of different environment settings. Training conditions contain four different weather in Town 1(Training town) while the rest
settings are used for testing.

Fig. 5. Left: Actor network architecture of DeRL. The abstract representation encoded by SEM and the car speed are fed into the actor network, and the
gating mechanism selectively activates different branches to predict actions. The command control contains Straight, Turn-left and Turn-right. Critic network
architecture of DeRL. Right: Critic network architecture of DeRL. The full-state information and action are fed into the critic network to predict the state-action
value. The gating mechanism selectively activates different branches to predict value.

TABLE I

CONFIGURATION DETAIL OF SEM

verify the feasibility of SEM in real-world driving scenario,
we simultaneously train the SEM with images and correspond-
ing semantic segmentation predicted by DeepLabv3+ [56],
which is pretrained on Cityscapes dataset [57] and fine-tuned
with a small number of CARLA images. Despite the simplicity
of our SEM, it is demonstrated to effectively mitigate the
inefficient exploration of large-scale continuous action for
VB-AUDN.

b) Environment model details: Our environment model
contains a transition model and a reward model. The transition
model only consists of three fully connected layers. The action
at passes through one fully connected layer of size (3, 128)
and is then concatenated with the encoded ot . The output then
passes through two fully connected layers of size (328, 512)
and (512, 200) to produce the predicted next observation ot+1.

The reward model contains four fully connected layers. The
first layer of size (3, 128) for dealing with at . The output then
is concatenated with encoded ot and ot+1 and passes through

three fully connected layers of size (528, 512), (512, 256), and
(256, 1) to predict a reward.

c) Training the RL agent: In this section, we elaborate
the detailed network architecture of our asymmetric DDPG.
We feed the actor network with observed images and the
forward speeds of the car. As shown in Fig. 5, we first
concatenate features of the observed images and the forward
speeds to provide the observation features. The command c
is a categorical variable that selectively activates one of the
branches, which is proven to be effective in the urban driving
system [8]. The command signal c is provided by the expert,
which is similar to previous works like [8], [12]. There are
3 kinds of commands. Straight: drive straight at the next
intersection; Turn-left: turn left at the next intersection; Turn-
right: turn right at the next intersection. Three policy branches
are specifically learned to extract the corresponding hidden
knowledge for action prediction. The driving action contains
three continuous actions, the steering angle asteer ∈ [−1, 1],
the acceleration aacceleration ∈ [0, 1] and the brake abrake ∈
[0, 1], respectively.

In our experiment, the sensor from the CARLA simulator
is used to obtain the measurement as the full-state st =
(v f , vl , ϕ, d0, d1, d2, d3, d4), whose detailed meaning is shown
in Fig. 2. As shown in Fig. 5, the action outputs from
the actor network and the full-state information are fed into
the critic network to estimate the state-action value. The
gating mechanism is also used to selectively activate different
branches to predict the state-action value.

We refer to the code from Ben Lau2 to set the default
parameters of DDPG, which is designed for TORCS [23].

2https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

5386 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Fig. 6. Comparison of feature maps extracted by VAE and SEM in different scenarios. The first row shows the input image. The second and the third rows
indicate the third convolutional layer feature maps extracted by VAE and SEM, respectively.

Fig. 7. Distribution of abstract representation zt extracted by VAE (left) and
our SEM (right). To visualize the distribution of abstract representation zt ,
we utilize t-SNE to embed high-dimensional zt into a low-dimensional space
of two dimensions. Different colors represent the different locations of the
car. The red dot represents the left of the road, the green dot represents the
middle of the road and the yellow dot represents the right of the road.

In the training process, the discount factor is set as 0.95. The
learning rate of actor network is set as 0.0001 and the learning
rate of the critic network is set as 0.001. To ensure the agent
training stably, we first warm up the environment model for
20 exploration episodes before policy learning. Both driving
tasks and weather are randomly initialized during the training
process.

3) Evaluation Metrics: In VB-AUDN task, the objective
is to arrive at a destination with as few traffic infractions
as possible. Therefore, there are two quantitative evaluation
criteria in our experiments, i.e., the success rate and frequency
of traffic infractions, which are the same to [28].

The success rate indicates the percentage of successfully
completed episodes in goal-directed navigation tasks.

An episode is considered successful when the agent reaches
the goal within a time budget; a time budget is the time to
reach the destination along the optimal path at a speed of
10 km/h.

The frequency of traffic infraction suggests the average
distance traveled between two infractions in “navigation with
dynamic obstacles” task. The infraction includes the following
five types: driving on the opposite lane, driving on the side-
walk, colliding with other vehicles, colliding with pedestrians,
and hitting static objects. The detailed evaluation standards
can refer to the protocol of [28].

TABLE II

DISTANCE BETWEEN DIFFERENT DISTRIBUTIONS OF LOCATION

B. Learning Abstract Representation

In this section, we will illustrate this viewpoint by visualiz-
ing the feature maps and latent vectors extracted by VAE and
our SEM, respectively.

The first limitation is that VAE encodes all information
of the observation, which contains task-irrelevant portion.
We take the third convolutional layer visualization of vae and
sem, respectively. As shown in Fig. 6, the features extracted
by VAE contain the vehicle body information and a lot of
unimportant background details, e.g., the building, the sky
or the vegetation. While our SEM can better focus on the
lane, the road, and vehicle body information. This part of the
information can better reflect the vehicle’s position and pose,
which is more critical information in driving tasks. What is
more the scene background has a low response in SEM feature
maps, which can prevent over-fitting to a certain extent.

The second limitation is that the latent vector encoded
by VAE is insensitive to the minor changes of the input,
especially the position of perspective. In our experiment,
we have randomly collected 300 observation images in the
simulator and divided them into three categories according to
the location of the car, “left of the road,” “middle of the road,”
and “right of the road.” To visualize the distribution of abstract
representation zt encoded by VAE, we utilize t-distributed
stochastic neighbor embedding (t-SNE) [58] to embed high-
dimensional zt into a low-dimensional space of two dimen-
sions. As illustrated in the left of Fig. 7(a), the distribution of
the VAE latent vector is very close regardless of the location
of the car. It is dangerous that the agent has no sense of its
location on the road. Without the random sampling of the
latent vector, our SEM can remain sensitive to the changing
of agent location.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DERL FOR VISUAL AUTONOMOUS URBAN DRIVING NAVIGATION 5387

TABLE III

QUANTITATIVE EVALUATION OF FOUR TASKS. THE TABLE SHOWS THE PERCENTAGE OF SUCCESSFULLY COMPLETED EPISODES PER TASK DURING
DIFFERENT CONDITIONS. WE COMPARE OUR DERL WITH OTHER STATE-OF-THE-ART METHODS. “WITH DEMO” MEANS THAT THE DRIVING

POLICY SHOULD BE TRAINED WITH EXPERT DEMONSTRATIONS. “WITHOUT DEMO” MEANS THAT THE DRIVING POLICY DOES NOT

REQUIRE THE USE OF EXPERT DEMONSTRATIONS FOR TRAINING. BOLD NUMBER IS THE BEST IN EACH CONDITION

TABLE IV

INFRACTION ANALYSIS BETWEEN OUR DERL AND OTHER STATE-OF-THE-ART METHODS. THE METRIC OF THE AVERAGE DRIVING

DISTANCE BETWEEN TWO INFRACTIONS IS USED. THE HIGHER THE RESULTS, THE BETTER THE AGENT PERFORMS.
BOLD NUMBER IS THE BEST IN EACH CONDITION

We further measure the distance between two distribu-
tions by maximum mean discrepancy (MMD) [59], as shown
in Table II. In Table II, L-M denotes the distribution distance
between “left of the road” and “middle of the road;” L-R
is the distribution distance between “left of the road” and
“right of the road;” M-R is the distribution between “middle
of the road” and “right of the road.” The distance between
different distributions of the location of VAE latent is closer
than SEM, which illustrates the SEM is more sensitive about
location. Meanwhile, as shown in the right of Fig. 7(b),
the visualized result further indicates that SEM distinguished
different locations of the agent better than VAE.

C. Comparison With State-of-the-Art Methods

We compare our proposed model with state-of-the-art meth-
ods, i.e., MP [28], IL [8], A3C [28] and CIRL [12]. Par-
ticularly, both IL and CIRL utilize driver demonstrations in
training process.

1) MP: We apply the MP method proposed by
Dosovitskiy et al. [28] that decomposes the driving task
among the following subtasks: perception, planning,
and continuous control.

2) IL: IL serves as an essential tool for learning human
skills that are difficult to program by hand. We uti-
lize conditional CIL [8] in our comparison experiment,
which uses ConvNets to map an image directly to
control.

3) Asynchronous A3C: Asynchronous A3C algorithm [45]
has demonstrated success in TORCS 3-D car racing
simulator [23]. We utilize the released code3 to evaluate
the performance of the A3C algorithm.

3https://github.com/carla-simulator/reinforcement-learning

4) CIRL: The CIRL [12] algorithm also uses expert demon-
strations to train an IL ConvNets, which is applied to
initialize the policy network of the DDPG framework.
It has been demonstrated efficient for large continuous
action space.

1) Success Rate of Goal-Directed Navigation: Table III
presents the quantitative comparison results between our DeRL
and other state-of-the-art methods, where “with demo” means
the driving policy should be trained with expert demonstra-
tions, and “without demo” means that the driving policy does
not require the use of expert demonstrations for training. It can
be observed that our DeRL agent has a higher success rate than
CIL except for dynamic tasks. Our agent can achieve superior
performance without expensive expert demonstrations. Mean-
while, our proposal outperforms another demonstration-based
method CIRL under the training conditions and the new
weather tasks. Although CIRL excels in generalizing to the
new town, it heavily relies on demonstrations to initialize the
parameters of the policy network.

Our DeRL also outperforms MP which learns abundant
intermediate features with well-designed rules. Similar to our
DeRL, A3C learns driving policy without expert demonstra-
tions. The input of A3C contains two most recent images
observed by the agent and a vector of measurements, which
includes the current speed of the car, distance to goal, and
damage from collisions. By contrast, our DeRL achieved far
better performance by only using s single image and the
forward speed as the to the policy network. For example,
in the training conditions and new weather condition, our
DeRL are 93% and 96% on the success rate in the navigation
task, which are much higher than A3C. A3C has the worst
performance especially in more complicated tasks such as “one
turn” and “navigation.” One of the reasons for this problem is
that the conventional RL is unstable and brittle for complex

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

5388 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Fig. 8. Effectiveness evaluation of SEM and DR in “straight” task (left) and “one turn” task (right). DDPG+AE is the learning curve of DDPG agent equips
with AE encoder. DDPG+ SEM is the learning curve of DDPG agent equips with SEM encoder. DeRL denotes the complete version of the proposed method,
which can also be regarded as DDPG equipped with both SEM and DR.

TABLE V

COMPARISON RESULTS BETWEEN AE-DERL AND SEM-DERL IN TERMS OF THE PERCENTAGE OF SUCCESSFULLY COMPLETED
EPISODES PER TASK. BOLD NUMBER IS THE BEST IN EACH CONDITION

TABLE VI

ABLATION STUDY ON DR IN TERMS OF THE PERCENTAGE OF SUCCESSFULLY COMPLETED EPISODES PER TASK

real-world tasks [4], which requires the agent to explore for
large continuous action space.

2) Infraction Analysis: Table IV shows the average dis-
tance (kilometer) driven between two infractions. Compared
with A3C, our approach has a longer average distance in
almost all tasks. This indicates that our proposed method is
safer. Especially, in the task of avoiding driving out of the
road and colliding statics, the agent can outperform A3C more
than 10 times. In most cases, our DeRL agent achieves the
best performance for avoiding pedestrians, which is one of the
difficult tasks due to their small size and irregular movements
for pedestrians. Moreover, our agent also achieves quite good
results under “new town and new weather” conditions, which
indicates that the driving policy learned by DeRL is able to
generalize to unseen scenarios.

D. Ablation Studies

In this section, we conduct ablation studies to investigate the
effectiveness of different components of our model. Specifi-
cally, we conduct comparative experiments to analyze SEM
and DR in our DeRL. In the following experiments, DDPG is
utilized as our base model.

1) DDPG+AE: DDPG [25] is an advanced actor-critic
MFRL algorithm, which is considered as the base frame-
work of DeRL. DDPG+AE indicates that the observed

image is encoded by autoencoder (AE) and then fed to
the DDPG.

2) DDPG+SEM: We apply SEM to encode the observed
image instead of AE. The experimental settings and
parameter settings are consistent with DDPG.

1) SEM: Table V reflects the effectiveness of the auto-
encoder (AE) and our SEM. SEM-PS and SEM-ground-
truth segmentation (GS) denote that SEM is trained with
predicted and GS maps, respectively. As baseline, AE achieves
acceptable results under training conditions. However, its
performance declines sharply in all testing conditions. On the
contrary, SEM-PS and SEM-GS still perform well in testing
conditions. It demonstrates that the features extracted by SEM
are more robust and insensitive to the variation of weather
conditions or scenes. As shown in Fig. 8, DDPG trained with
SEM significantly outperforms AE, indicating that our SEM
is able to learn effective driving feature representations.

2) Deduction Reasoner: Tables VI and VII illustrate the
importance of DR in terms of success rate and driving safety,
respectively. Obviously, our DR substantially promotes the
success rate in all tasks, especially in “new town” and “new
town and new weather” scenarios. It indicates that DR pro-
motes generalization ability, and the agent can handle changing
and unpredictable environments. In addition, one can observe
that safety performance has also been improved in most task

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DERL FOR VISUAL AUTONOMOUS URBAN DRIVING NAVIGATION 5389

TABLE VII

ABLATION STUDY ON DR IN TERMS OF DRIVING SAFETY. BOLD NUMBER IS THE BEST IN EACH CONDITION

Fig. 9. Utility of Qcritic and Qde. Top left: the global trajectory of the agent. Top right: the value of Qcritic and Qde that reflect the performance of the
agent in the observed time frame. Bottom: the sample frames of the bird view driving trajectory, and each frame corresponds to each time step marked in red
in the middle figure. There is a significant decrease in Qde value before the agent drives to the opposite lane while the Qcritic value is relatively insensitive.
It indicates that Qde is more sensitive to future conditions.

scenarios. This improvement is even more significant in the
new weather. In order to show the utility of the self-assessment
value provided by DR, we compare the DR value (Qde) with
the critic value (Qcritic) when the agent tends to drive to the
opposite lane, as shown in Fig. 9. At time step t1, we impose
a disturbance on the steer, and the agent tends to drive to the
opposite lane, as shown in the top left of Fig. 9. We then
observe the DR value (Qde) and the model-free critic value
(Qcritic), as shown in the top right of Fig. 9. There is a
significant decrease in Qde value before the agent drives to the
opposite lane while the Qcritic value changes rather slightly.
This indicates that Qde is far more sensitive to dangerous
situations (i.e., driving on the opposite lane) than Qcritic, which
is beneficial to constrain driving policy learning.

Fig. 8 shows the training process of DDPG+AE,
DDPG+SEM, and DeRL in “straight” task and “one turn”
task. We compare DDPG+SEM and DeRL to evaluate the
effect of DR. In the easiest “straight” task, the agent with DR
and without DR achieves comparable results. While in a more
complex task scenario, i.e., “one turn” task, DR significantly
improves efficiency and increases cumulative rewards, which
corresponds to the results of success rate in Table VI.

We further explore how the depth of deduction steps
affects performance. As shown in Fig. 10, we compare the
performance of different deduction steps: 1 step, 5 steps, 10
steps, and 15 steps. The deduction with 10 steps achieves the
best performance in our experiment, while those of 5 steps and
15 steps get the second and third performances, respectively.
We believe that a deeper deduction can make DeRL
agent perform better, e.g., DR1−step < DR5−step < DR10−step.

Fig. 10. Evaluation on the deduction depth. h-step indicates that DR deduces
the future trajectory with h steps.

However, the performance decreases when the depth of the
deduction increases to 15 steps. The main reason is that
the approximation errors will increase as the depth of the
deduction increases, which inevitably leads to the model
performance degradation.

VI. CONCLUSION

In this article, we propose a DeRL method, named
DeRL, to address the challenging problems of vision-based
autonomous urban driving. Our DeRL embeds a DR into
DDPG to resolve the sample inefficiency problem that is
intractable in RL research. With the help of DR, our DeRL
agent is able to foresee future trajectories from the current
state. It also has an appealing property for self-assessing
about future actions and states and reactively navigating for
an effective response to unforeseen and complex circum-
stances. In addition, we deploy a novel SEM to learn effective

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

5390 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

intermediate representations from raw images observed in
various driving scenes. Extensive experimental results demon-
strate that our DeRL improves the performance of DDPG on
vision-based autonomous urban driving tasks both in terms
of the success rate and traffic infraction metric. Finally,
inspired by Ye et al. [60], we plan to equip our DR with meta
RL (MRL) to transfer driving policy from simulation to the
real world.

REFERENCES

[1] A. Kendall et al., “Learning to drive in a day,” in Proc. Int. Conf. Robot.
Autom. (ICRA), May 2019, pp. 8248–8254.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

[3] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. A. Riedmiller, “Deterministic policy gradient algorithms,” in Proc.
Int. Conf. Mach. Learn., 2014, pp. 387–395.

[4] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274,
2013.

[5] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2174–2182.

[6] J. Ziegler et al., “Making Bertha drive—An autonomous journey on a
historic route,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20,
Apr. 2014.

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in Proc. IEEE
Int. Conf. Comput. Vis., Dec. 2015, pp. 2722–2730.

[8] F. Codevilla, M. Muller, A. Lopez, V. Koltun, and A. Dosovitskiy, “End-
to-end driving via conditional imitation learning,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2018, pp. 1–9.

[9] C. C. White and D. J. White, “Markov decision processes,” Eur. J. Oper.
Res., vol. 39, no. 1, pp. 1–16, 1989.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[11] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” 2016,
arXiv:1610.03295. [Online]. Available: http://arxiv.org/abs/1610.03295

[12] X. Liang, T. Wang, L. Yang, and E. Xing, “CIRL: Controllable imitative
reinforcement learning for vision-based self-driving,” in Proc. Eur. Conf.
Comput. Vis., Sep. 2018, pp. 584–599.

[13] K. Asadi, “Strengths, weaknesses, and combinations of model-
based and model-free reinforcement learning,” M.S. thesis, Dept.
Comput. Sci., Univ. Alberta, Edmonton, AB, Canada, 2015.
[Online]. Available: https://era.library.ualberta.ca/items/5f163754-3a20-
47a0-8649-14d1fd816671, doi: 10.7939/R3C24QW38.

[14] M. Thabet, M. Patacchiola, and A. Cangelosi, “Sample-efficient deep
reinforcement learning with imaginary rollouts for human-robot inter-
action,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Nov. 2019, pp. 5079–5085.

[15] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4754–4765.

[16] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in Proc. Int. Conf. Mach. Learn.,
2011, pp. 465–472.

[17] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-
ensemble trust-region policy optimization,” 2018, arXiv:1802.10592.
[Online]. Available: http://arxiv.org/abs/1802.10592

[18] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7559–7566.

[19] S. Chiappa, S. Racaniere, D. Wierstra, and S. Mohamed, “Recurrent
environment simulators,” 2017, arXiv:1704.02254. [Online]. Available:
http://arxiv.org/abs/1704.02254

[20] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 64–72.

[21] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 908–918.

[22] J. García and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–1480,
2015.

[23] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner. (2000). Torcs, the Open Racing Car Simulator. Software.
[Online]. Available: http://torcs.sourceforge.net

[24] L. Kaiser et al., “Model-based reinforcement learning for Atari,” 2019,
arXiv:1903.00374. [Online]. Available: http://arxiv.org/abs/1903.00374

[25] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[26] L. Chang and D. Y. Tsao, “The code for facial identity in the primate
brain,” Cell, vol. 169, no. 6, pp. 1013–1028, 2017.

[27] D. Ha and J. Schmidhuber, “Recurrent world models facilitate pol-
icy evolution,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 2450–2462.

[28] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. Annu. Conf. Robot
Learn., 2017, pp. 1–16.

[29] D. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network,” in Proc. Adv. Neural Inf. Process. Syst., 1989, pp. 305–313.

[30] W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 2056–2063.

[31] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Comput. Intell.
Neurosci., vol. 2018, pp. 1–13, Feb. 2018.

[32] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face repre-
sentation by joint identification-verification,” in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 1988–1996.

[33] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet:
Deep learning on point sets for 3D classification and segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 652–660.

[34] T. Chen, L. Lin, L. Liu, X. Luo, and X. Li, “DISC: Deep image saliency
computing via progressive representation learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 6, pp. 1135–1149, Jun. 2016.

[35] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-
end autonomous driving,” 2016, arXiv:1605.06450. [Online]. Available:
http://arxiv.org/abs/1605.06450

[36] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning
from visual demonstrations,” in Proc. Adv. Neural Inf. Process. Syst.,
I. Guyon et al., Eds. Red Hook, NY, USA: Curran Associates, 2017,
pp. 3812–3822.

[37] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler,
and M. J. Kochenderfer, “Multi-agent imitation learning for driving
simulation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2018, pp. 1534–1539.

[38] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring
the limitations of behavior cloning for autonomous driving,” 2019,
arXiv:1904.08980. [Online]. Available: http://arxiv.org/abs/1904.08980

[39] M. Bansal, A. Krizhevsky, and A. S. Ogale, “ChauffeurNet: Learning
to drive by imitating the best and synthesizing the worst,” 2018,
arXiv:1812.03079. [Online]. Available: https://arxiv.org/abs/1812.03079

[40] H. Fan, Z. Xia, C. Liu, Y. Chen, and Q. Kong, “An auto-tuning
framework for autonomous vehicles,” 2018, arXiv:1808.04913. [Online].
Available: https://arxiv.org/abs/1808.04913

[41] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, “A new reinforcement learning
vehicle control architecture for vision-based road following,” IEEE
Trans. Veh. Technol., vol. 49, no. 3, pp. 997–1005, May 2000.

[42] A. El Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end deep
reinforcement learning for lane keeping assist,” 2016, arXiv:1612.04340.
[Online]. Available: http://arxiv.org/abs/1612.04340

[43] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” 2017, arXiv:1704.03952. [Online].
Available: http://arxiv.org/abs/1704.03952

[44] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electron. Imag., vol. 2017,
no. 19, pp. 70–76, 2017.

[45] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[46] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models:
Model-free deep RL for model-based control,” 2018, arXiv:1802.09081.
[Online]. Available: http://arxiv.org/abs/1802.09081

[47] S. Racanière et al., “Imagination-augmented agents for deep rein-
forcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 5690–5701.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.7939/R3C24QW38

HUANG et al.: DERL FOR VISUAL AUTONOMOUS URBAN DRIVING NAVIGATION 5391

[48] X. Wang, W. Xiong, H. Wang, and W. Yang Wang, “Look before
you leap: Bridging model-free and model-based reinforcement learning
for planned-ahead vision-and-language navigation,” in Proc. Eur. Conf.
Comput. Vis., Sep. 2018, pp. 37–53.

[49] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 6118–6128.

[50] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
J. Artif. Intell. Res., vol. 47, pp. 253–279, Jun. 2013.

[51] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and
P. Abbeel, “Asymmetric actor critic for image-based robot learn-
ing,” in Proc. Robot., Sci. Syst. Conf., Pittsburgh, PA, USA, 2018.
[Online]. Available: http://www.roboticsproceedings.org/rss14/p08.html,
doi: 10.15607/RSS.2018.XIV.008.

[52] D. S. Chaplot, H. Jiang, S. Gupta, and A. Gupta, “Semantic curiosity
for active visual learning,” in Proc. Eur. Conf. Comput. Vis. Berlin,
Germany: Springer, 2020, pp. 309–326.

[53] C. Yu et al., “DS-SLAM: A semantic visual SLAM towards dynamic
environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2018, pp. 1168–1174.

[54] Z.-W. Hong et al., “Virtual-to-real: Learning to control in visual
semantic segmentation,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 4912–4920.

[55] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. Int. Conf. Learn. Represent., 2014, pp. 1–15.

[56] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 801–818.

[57] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 3213–3223.

[58] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[59] L. Song, “Learning via Hilbert space embedding of distributions,” Ph.D.
dissertation, Univ. Sydney, Sydney, NSW, Australia, 2008.

[60] F. Ye, P. Wang, C.-Y. Chan, and J. Zhang, “Meta reinforcement
learning-based lane change strategy for autonomous vehicles,” 2020,
arXiv:2008.12451. [Online]. Available: http://arxiv.org/abs/2008.12451

Changxin Huang (Graduate Student Member,
IEEE) received the B.S. degree from the School
of Automation Science and Engineering, South
China University of Technology, Guangzhou, China,
in 2015. He is currently pursuing the Ph.D. degree
with Sun Yat-sen University, Guangzhou, advised by
Prof. Liang Lin.

His current research interests include reinforce-
ment learning and robotics.

Ronghui Zhang received the Ph.D. (Eng.) degree
in mechanical and electrical engineering from
Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences, Changchun,
China, in 2009.

He is currently an Associate Professor with Sun
Yat-sen University, Guangzhou, China. His current
research interests include computer vision, intelli-
gent control and intelligent transportation system
(ITS).

Meizi Ouyang is currently pursuing the master’s
degree with the School of Data and Computer Sci-
ence, Sun Yat-sen University, Guangzhou, China.

Her research interests include reinforcement learn-
ing, deep learning, and computer vision.

Pengxu Wei received the B.S. degree in computer
science and technology from China University of
Mining and Technology, Beijing, China, in 2011,
and the Ph.D. degree from the School of Electronic,
Electrical, and Communication Engineering, Uni-
versity of Chinese Academy of Sciences, Beijing,
in 2018.

She is currently a Research Scientist with Sun
Yat-sen University, Guangzhou, China. Her cur-
rent research interests include computer vision and
machine learning, specifically for data-driven vision
and scene image recognition.

Junfan Lin (Graduate Student Member, IEEE)
received the B.S. degree in software engineering
from Sun Yat-sen University, Guangzhou, China,
in 2017, where he is currently pursuing the Ph.D.
degree in computer science and technology, advised
by Prof. Liang Lin.

His research interests include reinforcement learn-
ing and natural language processing.

Jiang Su received the Ph.D. degree from the Depart-
ment of Electrical and Electronic Engineering, Impe-
rial College London, London, U.K., in 2018.

He joined the Department of Computer Science,
University of Cambridge, Cambridge, U.K., as a
Research Associate, in 2019. He is currently leading
a Research Team with DarkMatter AI Inc., Guang-
dong, China, focusing on high-performance artificial
intelligence (AI) algorithms and robotics research.

Liang Lin (Senior Member, IEEE) is a Full
Professor of computer science with Sun Yat-sen
University, Guangzhou, China. He served as the
Executive Director and a Distinguished Scientist
with SenseTime Group, Beijing, China, from 2016 to
2018, leading the Research and Development Teams
for cutting-edge technology transferring. He has
authored or coauthored more than 200 articles in
leading academic journals and conferences [e.g.,
20+ articles in IEEE TRANSACTIONS ON PAT-
TERN ANALYSIS AND MACHINE INTELLIGENCE

(TPAMI)/International Journal of Computer Vision (IJCV)], and his articles
have been cited by more than 16 000 times.

Dr. Lin is a Fellow of IET. He was a recipient of numerous awards and
honors including the Wu Wen-Jun Artificial Intelligence Award, the First
Prize of China Society of Image and Graphics, the Google Faculty Award
in 2012, the Best Paper Diamond Award in IEEE ICME 2017, the Annual
Best Paper Award by Pattern Recognition (Elsevier) in 2018, and the ICCV
Best Paper Nomination in 2019. His supervised Ph.D. Students received the
ACM China Doctoral Dissertation Award, the CCF Best Doctoral Dissertation,
and the CAAI Best Doctoral Dissertation. He is an Associate Editor of the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

and IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, and served as
Area Chairs for numerous conferences such as CVPR, ICCV, SIGKDD, and
AAAI.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2022 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.15607/RSS.2018.XIV.008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

