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Abstract. This paper introduces the real image Super-Resolution (SR)
challenge that was part of the Advances in Image Manipulation (AIM)
workshop, held in conjunction with ECCV 2020. This challenge involves
three tracks to super-resolve an input image for ×2, ×3 and ×4 scaling
factors, respectively. The goal is to attract more attention to realistic
image degradation for the SR task, which is much more complicated
and challenging, and contributes to real-world image super-resolution
applications. 452 participants were registered for three tracks in total,
and 24 teams submitted their results. They gauge the state-of-the-art
approaches for real image SR in terms of PSNR and SSIM.

1 Introduction

Single image super-resolution (SR) reconstructs high-resolution (HR) images
from low-resolution (LR) counterparts with image quality degradations [12,44].
Instead of imposing higher requirements on hardware devices and sensors, it
could be applicable to many practical scenarios, such as video surveillance, satel-
lite, medical imaging, etc. As a fundamental res earch topic, SR has attracted a
long-standing and considerable attention in computer vision community.

With the emergence of deep learning, convolutional neural network (CNN)
based SR methods (e.g., SRCNN [8], SRGAN [18], EDSR [20], ESRGAN [38]
and RCAN [51]) inherit the powerful capacity of deep learning and have achieved
remarkable performance improvements. Nevertheless, so far, the remarkable
progress of SR is mainly driven by the supervised learning of models from LR
images and their HR counterparts. While the bicubic downsampling is usually
adopted to simulate the LR images, the learned deep SR model performs much
less effective for real-world SR applications since the image degradation in real-
world is much more complicated.
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To mitigate this issue, several real SR datasets have been recently built,
City 100 [5] and SR-RAW [50]. The images in City100 were captured for the
printed postcards in the indoor environment, which are limited in capturing
the complicated image and degradation characteristics of natural scenes. The
images in SR-RAW were collected in the real world and a contextual bilateral
loss was proposed to address the misalignment problem in the dataset. Besides,
Cai et al. [4] released another real image SR dataset, named RealSR, which
was captured from two DSLR cameras. They proposed the LP-KPN method
in a Laplacian pyramid framework. Considering the complex image degradation
across different scenes and devices, a large-scale diverse real SR dataset, named
DRealSR [40], was released to further promote the research on real-world image
SR. Images of DRealSR were captured by five different DSLR cameras and posed
more challenging image degradation. In [40], the proposed component divide-
and-conquer model (CDC) built a baseline, hourglass SR network (HGSR), in
a stacked architecture, explored different reconstruction difficulties in terms of
three low-level image components inspired by corner point detection, i.e, the
flat, edges and corner points, and trained the model with a mediate supervision
strategy. Besides, its proposed gradient-weighted (GW) loss also drives the model
to adapt learning objectives to the reconstruction difficulties of three image
components and has a flexibility of the application to any SR model.

Jointly with the Advances in Image Manipulation (AIM) 2020 workshop,
we organize the AIM Challenge on Real-world Image Super-Resolution. Specif-
ically, this challenge concerns the real-world SISR, which poses two challenging
issues [40]: (1) more complex degradation against bicubic downsampling, and (2)
diverse degradation processes among devices, aiming to learn a generic model
to super-resolve LR images captured in practical scenarios. To achieve this goal,
paired LR and HR images are captured by various DSLR cameras and provided
for training. They are randomly selected from the DRealSR dataset. Images for
training, validation and testing are captured in the same way with the same set
of cameras. The setting is similar to that from the NTIRE 2019 challenge on real
image super-resolution [3] employing RealSR dataset [4], and is different from the
AIM 2019 [25] and NTIRE 2020 [24] challenges on real-world super-resolution
where no LR-HR pairs are available for training, therefore an unsupervised set-
ting defined in [23].

This challenge is one of the AIM 2020 associated challenges on: scene
relighting and illumination estimation [10], image extreme inpainting [27],
learned image signal processing pipeline [15], rendering realistic bokeh [16], real
image super-resolution [39], efficient super-resolution [49], video temporal super-
resolution [32] and video extreme super-resolution [11].
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Table 1. Details of the dataset for the challenge

Scale Split Type Number Size (LR) Evaluation

×2 Train Cropped patches 19,000 380 × 380 PSNR (on RGB channels), SSIM

Validation Aligned images 20 ∼2000 × 3000

Test Aligned images 60

×3 Train Cropped patches 19,000 272 × 272

Validation Aligned images 20 ∼1300 × 2000

Test Aligned images 60

×4 Train Cropped patches 19,000 192 × 192

Validation Aligned images 20 ∼1000 × 1250

Test Aligned images 60

2 AIM 2020 Challenge on Real Image Super-Resolution

The objectives of the AIM 2020 challenge on real image super-resolution chal-
lenge are: (i) to further explore the researches on real image SR; (ii) to fully
evaluate different SR approaches on different scale factors; (iii) to offer an oppor-
tunity of communications between academic and industrial participants.

2.1 DRealSR Dataset

DRealSR1 [40] is a large-scale real-world image super-resolution. Only half of
images in DRealSR are randomly selected for this challenge. These images are
captured from five DSLR cameras (i.e., Canon, Sony, Nikon, Olympus and Pana-
sonic) in natural scenes and cover indoor and outdoor scenes avoiding moving
objects, e.g., advertising posters, plants, offices, buildings, etc. These HR-LR
image pairs are aligned. To get access to the training and validation data and
submit SR results, the registration on Codalab2 is required. Details of the dataset
in this challenge are given in Table 1.

2.2 Track and Competition

Tracks. The challenge uses the newly released DRealSR dataset and has three
tracks corresponding to ×2, ×3, ×4 upscaling factors. The aim is to obtain a
network design or solution capable to produce high-quality results with the best
fidelity to the reference ground truth.

Challenge Phases. (1) Development phase: HR images from DRealSR have
4000 × 6000 pixels on average. For the convenience of model training, images are
cropped into patches. For ×2 scale factor, LR image patches are 380 × 380; for
×3 scale factor, LR image patches are 272 × 272; for ×4 scale factor, LR image
1 The dataset is publicly available at https://github.com/xiezw5/Component-Divide-

and-Conquer-for-Real-World-Image-Super-Resolution.
2 https://competitions.codalab.org.

https://github.com/xiezw5/Component-Divide-and-Conquer-for-Real-World-Image-Super-Resolution
https://github.com/xiezw5/Component-Divide-and-Conquer-for-Real-World-Image-Super-Resolution
https://competitions.codalab.org
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patches are 192 × 192. (2) Testing Phase: In the final test phase, participants
have access to LR images for three tracks, submit their SR results to Codalab
evaluation server and email their codes and factsheets to the organizers. The
organizers checked all the SR results and the provided codes to obtain the final
results.

Evaluation Protocol. The evaluation includes the comparison of the super-
resolved images with the reference ground truth images. We use the standard
peak signal to noise ratio (PSNR) and, complementary, the structural similarity
(SSIM) index as often employed in the literature. PSNR and SSIM implementa-
tions are found in most of the image processing toolboxes. For each dataset, we
report the average results (i.e. PSNRavg and SSIMavg) over all the processed
images belonging to it and employ for ranking the weighted value of normalized
PSNRavg and SSIMavg, which is defined as follows,

PSNRavg/50 + (SSIMavg − 0.4)/0.6. (1)

3 Challenge Results

There are 174, 128 and 168 registered participants for three tracks, respectively.
In total, 24 teams submitted their super-resolution results; 10, 2 and 11 teams
submitted results of one, two and three tracks, respectively. Among those sub-
mitted results of one track, seven teams are for ×4 scale factor. Details of final
testing results are provided in Table 2. It mainly reports the final evaluation
results and model training details.

As for the evaluation metric of weighted score claimed in Sect. 2.2, the leading
entries for Track 1, 2 and 3 are all from team Baidu. For Track 1 and 2, the
CETC-CSKT and the OPPO CAMERA team win the second and the third
places, respectively. For Track 3, ALONG and CETC-CSKT win the second and
the third places, respectively. Among those solutions for the challenge, some
interesting trends can be observed as follows.

Network Architecture. All the teams utilize deep neural networks for super-
resolution. The architecture of the deep network will greatly affect the per-
formance of super-resolution images. Several teams, e.g., TeamInception, con-
struct a network with the residual structure to reduce the difficulty of optimiza-
tion, While OPPO CAMERA connected the input to the output with a train-
able convolution layer. CETC-CSKT further proposed to pre-train the trainable
layer in the skip branch in advance. Several teams, such as DeepBlueAI and
SR-IM applied channel attention module in their network, while several others
like TeamInception and Noah TerminalVision employ both spatial attention and
channel attention on the feature level.

Data Augmentation. Most solutions conduct the data augmentation by ran-
domly flipping and rotating images by 90◦. The newly proposed CutBlur method
was employed by ALONG and OPPO CAMERA and performance improvements
are reported by these teams.
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Table 2. Evaluation results in the final testing phase. “Score” indicates the weighted
score (Eq. 1), i.e., the evaluation metric for the challenge. For “Ensemble”, “model” and
“self” indicate the model ensemble and the self-ensemble, respectively. “/” indicates
that those items are not provided by participants. We also provide results of “EDSR*”
for comparison with the same challenge dataset.

Team PSNR SSIM Score Ensemble ExtraData Loss

Track1 (×2)
Baidu 33.446 0.927 0.7736 Model+Self False L1 + SSIM
CETC-CSKT 33.314 0.925 0.7702 Model+Self False L1
OPPO CAMERA 33.309 0.924 0.7699 Model+Self False L1 + SSIM + MS-SSIM
AiAiR 33.263 0.924 0.7695 Model+Self True Clip L1
TeamInception 33.232 0.924 0.7690 Model+Self True L1 + MS-SSIM + VGG
Noah TerminalVision 33.289 0.923 0.7686 Self False adaptive robust loss

/eslaFfleS1867.0429.0771.33IAeulBpeeD
ALONG 33.098 0.924 0.7674 Self False L1 + L2
LISA-ULB 32.987 0.923 0.7659 / False L1 + SSIM
lyl 32.937 0.921 0.7635 / False L1
GDUT-SL 32.973 0.920 0.7634 Model False L1
MCML-Yonsei 32.903 0.919 0.7612 None False L1
Kailos 32.708 0.920 0.7601 Self False L1 + wavelet loss
qwq 31.640 0.913 0.7436 None False L1 + SSIM
debut /eurTenoN6917.0988.0632.13elek

///4917.0988.0022.13*RSDE
RRDN IITKGP 29.851 0.845 0.6696 None True /

Track2 (×3)
Baidu 30.950 0.876 0.7063 Model+Self False L1 + SSIM
CETC-CSKT 30.765 0.871 0.7005 Model+Self False L1
OPPO CAMERA 30.537 0.870 0.6966 Model+Self False L1 + SSIM + MS-SSIM
Noah TerminalVision 30.564 0.866 0.6941 Self False adaptive robust loss
MCML-Yonsei 30.477 0.866 0.6931 Self False L1
TeamInception 30.418 0.866 0.6928 Model+Self True L1 + MS-SSIM + VGG
ALONG 30.375 0.866 0.6922 Self False L1 + L2

/eslaFfleS8196.0768.0203.03IAeulBpeeD
lyl 30.365 0.864 0.6905 / False L1
Kailos 30.130 0.866 0.6900 Self False L1 + wavelet loss
qwq 29.266 0.852 0.6694 None False L1 + SSIM
EDSR* 28.763 0.821 0.6383 / / /
anonymous 18.190 0.825 0.5357 / False /

Track3 (×4)
Baidu 31.396 0.875 0.7099 Model+Self False L1 + SSIM
ALONG 31.237 0.874 0.7075 Self False L1 + L2
CETC-CSKT 31.123 0.874 0.7066 Model+Self False L1
SR-IM 31.174 0.873 0.7057 Self False /
DeepBlueAI 30.964 0.874 0.7044 Self False /
JNSR 30.999 0.872 0.7035 Model+Self True /
OPPO CAMERA 30.86 0.874 0.7033 Model+Self False L1 + SSIM + MS-SSIM
Kailos 30.866 0.873 0.7032 Self False L1 + wavelet loss
SR /eslaFfleS4496.0668.0506.03uLD
Noah TerminalVision 30.587 0.866 0.6944 Self False adaptive robust loss
Webbzhou 30.417 0.867 0.6936 None False /
TeamInception 30.347 0.868 0.6935 Model+Self True L1 + MS-SSIM + VGG
lyl 30.319 0.866 0.6911 / False L1
MCML-Yonsei 30.420 0.864 0.6906 Self False L1
MoonCloud 30.283 0.864 0.6898 Model + Self True /
qwq 29.588 0.855 0.6748 None False L1 + SSIM
SrDance 29.595 0.852 0.6729 / True MAE+VGG+GAN loss
MLP SR 28.619 0.831 0.6457 Self True GAN,TV,L1,SSIM,MS-SSIM,Cycle

///6536.0428.0212.82*RSDE
RRDN IITKGP 27.971 0.809 0.6201 None True /
congxiaofeng 26.392 0.826 0.6187 None False L1
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Fig. 1. The dense residual network architecture of the Baidu team for image Super-
Resolution

Ensemble Strategy. Most solutions adopted self-ensemble ×8. Some solutions
also performed model-ensemble by fusing results from models with different
training parameter, or even of different architectures.

Platform. All the teams except one team using Tensorflow utilized PyTorch to
conduct their experiments.

4 Challenge Methods and Teams

Baidu
The Baidu team proposed to apply Neural Architecture Search (NAS) approach
selecting variations of their previous dense residual model as well as RCAN model
[28]. In order to accelerate the searching process, Gaussian Process based Neu-
ral Architecture Search (GP-NAS) was applied as in [19]. Specifically, given the
hyper-parameters of GP-NAS, they are capable of predicting the performance of
any architectures in the search space effectively. Then, the NAS process is con-
verted to hyper-parameters estimation. By mutual information maximization,
the Baidu team can efficiently sample networks. Accordingly, based on the perfor-
mances of sampled networks, the posterior distribution of hyper-parameters can
be gradually and efficiently updated. Based on the estimated hyper-parameters,
the architecture with the best performance can be obtained.

The backbone model of the proposed method is a deep dense residual network
originally developed for raw image demosaicking and denoising. As depicted in
Fig. 1, in addition to the shallow feature convolution at the front and the upsam-
pler at the end, the proposed network consists of a total depth of D dense resid-
ual blocks (DRB). The input convolution layer converts the 3-channel LR input
to a total of F-channel shallow features. For the middle DRB blocks, each one
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Fig. 2. Framework of Adaptive Dense Connection Super Resolution reconstruction
(ADCSR) for the CETC-CSKT team

includes L stages of double layers of convolution and the outputs of all L stages
are concatenated together before convoluted from F ×L to F channels. An addi-
tional channel-attention layers are included at the end of each block, similar to
RCAN [51]. There are two types of skip connections included in each block, the
block skip connection (BSC) and inter-block skip connection (IBSC). The BSC
is the shortcut between input and output of block Bi, while IBSC includes two
shortcuts from the input of block Bi−1 to the two stages inside block Bi, respec-
tively. The various skip connections, especially IBSC, are included to combine
features with a large range of receptive fields. The last block is an enhanced
upsampler that transforms all F-channel LR features to the estimated 3-channel
SR image. This dense residual network has three main hyper-parameters: F is
the number of feature channels, D is the number of DRB layers and L is the
number of stages for each DRB. All these three hyper-parameters construct the
search space for NAS.

During training, a 120 × 120 patch is randomly cropped and augmented with
flipping and transposing from each training image for each epoch. A mixed loss of
L1 and multi-scale structural similarity (MS-SSIM) is taken for training. For the
experiment, the new model candidate search scheme using GP-NAS was imple-
mented in PaddlePaddle [26] and the final-training of searched models were con-
ducted using PyTorch. A multi-level ensemble scheme is proposed in testing,
including self-ensemble for patches, as well as patch-ensemble and model-ensemble
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for full-size images. The proposed method is validated to be highly effective, gener-
ating impressive testing results on all three tracks of AIM2020 Real Image Super-
resolution Challenge.

CETC-CSKT
The CETC-CSKT team proposed Adaptive Dense Connection Super Resolution
reconstruction(ADCSR) [42,43]. The algorithm is divided into BODY and SKIP.
The BODY part improves the utilization of convolution features through adap-
tive dense connection. An adaptive sub-pixel reconstruction module (AFSC) is
also proposed to reconstruct the features of BODY output. By pre-training SKIP
in advance, the BODY part focuses on high-frequency feature learning. for track
1 (×2), spatial attention is added after each residual block. The architecture is
shown in Fig. 2. Self-ensemble is used in EDSR [20]. The test image is divided
into 80 × 80 pixel blocks for reconstruction. Finally, only 60 × 60 input is used
for splicing to reduce the edge difference of blocks.

The proposed ADCSR uses the first 18900 training data sets for training, and
the last 100 as the test set for training. The input image block size is 80 × 80.
SKIP is trained separately, and then the entire network is trained at the same
time. The initial learning rate is 1 × 10−4. When the learning rate drops to
5 × 10−7, the training stops. L1 loss is utilized to optimize the proposed model.
The model is trained with NVIDIA RTX2080Ti * 4. Pytorch1.1.0 + Cuda10.0
+ cudnn7.5.0 is selected as the deep learning environment.

OPPO CAMERA
The OPPO CAMERA team proposed Self-Calibrated Attention Neural Network
for Real-World Super Resolution [6]. As shown in Fig. 3, the proposed model is
constituted of four integral components, i.e., feature extraction, residual in resid-
ual deep feature extraction, upsampling and reconstruction. It employs the same
residual structure and dense connections to DRLN [1]. A longer skip connection
is also added to connect the input to the output with a trainable parameter,
which can greatly reduces the difficulty of optimization and thus, the network
would pay more attention to the learning of the high frequency parts in images.
As shown in Fig. 4, three Basic Residual Block (BRB) forms a Large Residual
Block (LRB) with dense connection. Self-Calibration convolution (SCC) [22],
shown at top of Fig. 4, is adopted as a basic unit in order to expand receptive
field. Unlike conventional convolution, SCC enables each point in space to have
interactive information from nearby regions and channels. Dense connections are
established between the Self-Calibration convolution block (SCCB), each densely
connected residual block has three SCCB. To incorporate channel information
efficiently, an attention block with multi-scale feature integration is added in
every basic residual block as DRLN [1]. For the network optimization, L1 loss
function was introduced as pixel-wise loss. In order to improve the fidelity, SSIM
and MS-SSIM loss were also used as structure loss. With pixel loss and structure
loss, the total loss is formulated as follows,

Ltotal = LL1 + 0.2 · LMS−SSIM + 0.2 · LSSIM
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Fig. 3. The detailed network architecture of the proposed network for the
OPPO CAMERA team

Fig. 4. The proposed BRB and MAB for the OPPO CAMERA team. The top of the
figure shows the basic convolution structure of the proposed network with the dense
connection. The middle of the figure shows the basic residual block. The bottom of the
figure presents the channel attention mechanism of the network.

For the training, the proposed method splits the training data randomly into
two parts, i.e., training set and validation set, with the ratio of 18500:500. Con-
sidering its significant improvement in the Real World SR task, CutBlur [45] is
applied to augment training images. Self-ensemble and Parameter-fusion strat-
egy would obviously improve the fidelity index(PSNR and SSIM), and mean-
while, less noise in result images. The strategy of self-ensembles (×8) was used
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as explained in RCAN [52], and all the corresponding parameters of last 3 mod-
els are fused to derive a fused model Gfused, as described in [30]. Experiments
are conducted with Tesla V100 GPU.

AiAiR
The AiAiR team proposes that orientation-aware convolutions meet dual path
enhancement network (OADDet). Their method consists of four basic models
(model ensemble): OADDet, Deep-OADDet, original EDSR [21] and original
DRLN [1]. The core modules of OADDet, illustrated in Fig. 5, are borrowed
from DDet [31], Inception [33] and OANet [9] with minor improvements, such
as less attention modules, removing skip connections and replacing ReLU with
LeakyReLU. Overall architectures are similar to DDet [31]. It is found that
redundant attention modules will damage the performance and slow down the
training process. Therefore, attention modules are only applied to the last few
blocks of the backbone network and the last layer of the shallow network. Sim-
ilar to RealSR [4], PixelConv is also utilized, which contributes to ∼0.15 dB
improvement on the validation set.

– The training process generally consists of four stages on three different
datasets. The total training time is about 2000 GPU hours on V100.

– OADDet models are trained from scratch and download DIV2K pre-trained
EDSR/DRLN from official links.

– DIV2K dataset is used to pre-train our OADDet models and use manu-
ally washed AIM2020 datasets to fine-tune all models (further details in
GitHub README).

– Four models are trained using three different strategies:
1) For OADDet: Pre-training on DIV2K (300 epochs) then fine-tuning on
original AIM2020 ×2 dataset (600 epochs) and AIM2020 washed ×2 dataset
(100 epochs).
2) For Deep-OADDet: Pre-training on DIV2K (30 epochs) then fine-tuning
on AIM2020 washed ×2 + ×3 dataset (350 epochs), AIM2020 washed ×2
dataset (350 epochs) and AIM2020 washed ×2 dataset (100 epochs).
3) For EDSR/DRLN: Using DIV2K well-trained models then fine-tuning on
washed AIM2020 ×2 dataset (1000 epochs).

– Self-ensemble (×8), model-ensemble (four models) and proposed “crop-
ensemble” are conducted (further details in GitHub README Reproduce
×2 test dataset results).

– OADDet enjoys a more stable and faster training process than OANet, which
introduces too many attention modules at the early stage of the networks.
DDet proposes to use dynamic PixelConv with kernelsize = 5,7,9; however,
it is proved that kernelsize = 3,5,7 works better during training and testing
time.

TeamInception
The TeamInception team proposes learning Enriched Features for Real Image
Restoration and Enhancement. MIRNet, recently introduced in [47], is utilized

https://github.com/HolmesShuan/AIM2020-RealSR
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Fig. 5. OADDet and Deep-OADDet for the AiAiR team.

Fig. 6. Overall architectures of OADDet and Deep-OADDet for the AiAiR team.

with the collective goals of maintaining spatially-precise high-resolution repre-
sentations through the entire network and receiving strong contextual informa-
tion from the low-resolution representations. In Fig. 7. MIRNet3 has a multi-
scale residual block (MRB) containing several key elements: (a) parallel multi-
resolution convolution streams for extracting (fine-to-coarse) semantically-richer
and (coarse-to-fine) spatially-precise feature representations, (b) information
exchange across multi-resolution streams, (c) attention-based aggregation of
features arriving from multiple streams, and (d) dual-attention units to cap-
ture contextual information in both spatial and channel dimensions.

3 The code is publicly available at https://github.com/swz30/MIRNet.

https://github.com/swz30/MIRNet
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Fig. 7. Framework of the network MIRNet (recently introduced in [47]) for the Team-
Inception team.

The MRB consists of multiple (three in this work) fully-convolutional streams
connected in parallel. It allows information exchange across parallel streams in
order to consolidate the high-resolution features with the help of low-resolution
features, and vice versa. Each component of MRB is described as follows.

Selective Kernel Feature Fusion (SKFF). The SKFF module performs
dynamic adjustment of receptive fields via two operations –Fuse and Select, as
illustrated in Fig. 8. The fuse operator generates global feature descriptors by
combining the information from multi-resolution streams. The select operator
uses these descriptors to recalibrate the feature maps (of different streams) fol-
lowed by their aggregation. Details of both operators for the three-stream case
are elaborated as follows. (1) Fuse: SKFF receives inputs from three parallel
convolution streams carrying different scales of information. We first combine
these multi-scale features using an element-wise sum as: L = L1 + L2 + L3.
We then apply global average pooling (GAP) across the spatial dimension of
L ∈ R

H×W×C to compute channel-wise statistics s ∈ R
1×1×C . Next, a channel-

downscaling convolution layer is used to generate a compact feature representa-
tion z ∈ R

1×1×r, where r = C
8 for our experiments. Finally, the feature vector z

passes through three parallel channel-upscaling convolution layers (one for each
resolution stream) and provides us with three feature descriptors v1,v2 and v3,
each with dimensions 1 × 1 × C. (2) Select: this operator applies the softmax
function to v1,v2 and v3, yielding attention activations s1, s2 and s3 that we
use to adaptively recalibrate multi-scale feature maps L1,L2 and L3, respec-
tively. The overall process of feature recalibration and aggregation is defined as:
U = s1 · L1 + s2 · L2 + s3 · L3. Note that the SKFF uses ∼6× fewer parameters
than aggregation with the concatenation but generates more favorable results.
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Fig. 8. Schematic for selective kernel feature fusion (SKFF) for the TeamInception
team. It operates on features from multiple convolutional.

Dual Attention Unit (DAU). While the SKFF block fuses information
across multi-resolution branches, we also need a mechanism to share information
within a feature tensor, both along the spatial and the channel dimensions. The
dual attention unit (DAU) is proposed to extract features in the convolutional
streams. The schematic of DAU is shown in Fig. 9. The DAU suppresses less use-
ful features and only allows more informative ones to pass further. This feature
recalibration is achieved by using channel attention [14] and spatial attention [41]
mechanisms. (1) Channel attention (CA) branch exploits the inter-channel
relationships of the convolutional feature maps by applying squeeze and excita-
tion operations [14]. Given a feature map M ∈ R

H×W×C , the squeeze operation
applies global average pooling across spatial dimensions to encode global con-
text, thus yielding a feature descriptor d ∈ R

1×1×C . The excitation operator
passes d through two convolutional layers followed by the sigmoid gating and
generates activations d̂ ∈ R

1×1×C . Finally, the output of CA branch is obtained
by rescaling M with the activations d̂. (2) Spatial attention (SA) branch
is designed to exploit the inter-spatial dependencies of convolutional features.
The goal of SA is to generate a spatial attention map and use it to recalibrate
the incoming features M. To generate the spatial attention map, the SA branch
first independently applies global average pooling and max pooling operations
on features M along the channel dimensions and concatenates the outputs to
form a feature map f ∈ R

H×W×2. The map f is passed through a convolution
and sigmoid activation to obtain the spatial attention map f̂ ∈ R

H×W×1, which
is used to rescale M.

For training, L1, multi-scale SSIM and VGG loss functions are considered in
the model, defined as follows

Lf = αL1(ŷ,y) + βLMS-SSIM(ŷ,y) + γLVGG(ŷ,y) (2)

LVGG uses the features of conv2 layer after ReLU in the pre-trained VGG-16
network. Three RRGs are utilized, each of which contains 2 MRBs. MRB consists
of 3 parallel streams with channel dimensions of 64, 128, 256 at resolutions 1, 1

2 , 1
4 ,

respectively. Each stream has 2 DAUs. Patches with the size of 128 × 128 are
cropped. Horizontal and vertical flips are employed for data augmentation. The
model is trained from scratch with the Adam optimizer (β1 = 0.9, and β2 =
0.999) for 7 × 105 iterations. The initial learning rate is 2 × 10−4 and the batch
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Fig. 9. Dual attention unit incorporating spatial and channel attention mechanisms
for the TeamInception team.

size is 16. The cosine annealing strategy is employed to steadily decrease the
learning rate from the initial value to 10−6 during training.

At inference time, the self-ensemble strategy [2] is employed. For each test
image, a set of following 8 images are created: original, flipped, rotated 90◦,
rotated 180◦, rotated 270◦, 90◦ & flipped, 180◦ & flipped, and 270◦ & flipped.
Next, these transformed images are passed through our model and obtain super-
resolved outputs. Then we undo the transformations and perform averaging to
obtain the final image. To fuse results, three different variants of the proposed
networks are trained with different loss functions (Eq. 2): (1) only the first term,
(2) the first two terms (i.e., αL1 + βLMS-SSIM), and (3) all the terms. For the
variant 2, α = 0.16 and β = 0.84; for the variant 3, α = 0.01 and β = 0.84,
γ = 0.15.

Given an image, the generated self-ensembled results with each of these three
networks are averaged to obtain the final image. Results with self-ensemble strat-
egy and fusion are reported in Table 3. With 4 Tesla-V100 GPUs, it takes ∼3
days to train the network. The time required to process a test image of size
3780 × 5780 is 2 s (single method), 30 s (self-ensemble) and 87 s (fusion).

Noah TerminalVision
The Noah TerminalVision team proposed Super Resolution with weakly-paired
data using an Adaptive Robust Loss. The network is based on RRDBNet with 23
Residual in Residual Denseblocks. Only training pairs with a high PSNR score
were used for training. To further alleviate the bad effect of miss-alignment of
training data, the adaptive robust loss function proposed by Jon Barron was
used. For track 3, it additionally used a spatial attention module and an effi-
cient channel attention module. The spatial attention module is borrowed from
EDVR [37] and the efficient attention module is borrowed from ECA-Net [36].
Considering that the training data are not perfectly aligned, Adaptive Robust
Loss Function [2] for super resolution tasks is utilized to solve the weakly-paired
training problem. The self-ensemble strategy is to run inference on the combina-
tion of the 90/180/270-degree rotated images of the original/flipped input and
then to average the results.

Only training pairs with a high PSNR score (29) were used for training. The
learning rate is 2e−4, the patch size of inputs is 80 × 80 and the batchsize is
4. CosineAnnealingLR Restart learning rate scheme is employed and the restart
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Table 3. Results of validation set for the scale factor ×4 for the TeamInception team.
Comparison of using single method (SM), self-ensemble (SE) and Fusion (F) on vali-
dation set.

L1 L1 + LMS-SSIM L1 + LMS-SSIM + LVGG PSNR

SM
√

29.72

SM
√

29.83

SM
√

29.89

SM + F
√ √ √

30.08

SE + F
√ √ √

30.25

period is 250,000 steps. For each input, due to GPU memory constraint, images
are tested patch-wisely. The crop window is of size 120 × 120, and a stride of
110 × 110 was used to collect patches.

DeepBlueAI
The DeepBlueAI team proposed a solution based on RCAN [51], which was
implemented with PyTorch. In each RG, the RCAB number is 20, G = 10 and C
= 128 in the RIR structure. The model is trained from scratch, which costs about
4 days with 4 × 32G Tesla V100 GPU. For training, all the training images are
augmented by random horizontal flips and 90 rotations. In each training batch,
LR color patches with the size of 64 × 64 are extracted as inputs. The initial
leaning rate is set to 2.0 × 10−4 and learning rate of each parameter group use
a cosine annealing schedule with total 1.0 × 105 iterations and without restart.
For testing, each low resolution image is flipped and rotated to generate seven
augmented inputs; with the trained RCAN model, the corresponding super-
resolved images are generated. An inverse transform is applied to those output
images to get the original geometry. The transformed outputs are averaged all
together to yield the self-ensemble result.

ALONG
The ALONG team proposed Dual Path Network with high frequency guided
for real-world image Super-Resolution. The proposed method follows the main
structure of RCAN [51] and utilizes the guild filter to decompose the detail layer
and to restore high-frequency details. As illustrated in Fig. 10, a lot of share-
source skip connections in the original feature extraction path with channel
attention. Due to share-source skip connections, the abundant low-frequency
information can be bypassed and facilitate to train deeper network. Compared
with the previous simulated datasets, the image degradation process for real
SR is much more complicated. Low-resolution images lose more high-frequency
information and look blurry. Inspired by other image deblurring tasks [37,54,55],
a pre-deblur module is used before the residual groups to pre-process blurry
inputs and improve super-resolution accuracy. Specifically, the input image is
first down-sampled with strided convolution layers; then the upsampling layer
at the end will resize the features back to the original input resolution. The
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Fig. 10. RCAN for the Real Image Super-Resolution (RCANv2) for the ALONG team.

proposed dual path network restores fine details by decomposing the input image
and focusing on the detail layers. An additional branch focuses on the high-
frequency reconstruction. The input LR image is decomposed into the detail
layer using the guided filter, an edge-preserving low-pass filter [13]. Then a high-
frequency module is adopted on the detail layer, so the output result can focus
on restoring high-frequency details.

Besides, a variety of data augmentation strategies are combined to achieve
competitive results in different tracks, including Cutout [7], CutMix [46],
Mixup [48], CutMixup, RGB permutation, Blend. In addition, inspired by [45],
CutBlur, unlike Cutout, can utilize the entire image information while it enjoys
the regularization effect due to the varied samples of random HR ratios and loca-
tions. The experimental results also show that a reasonable combination of data
enhancement can improve the model performance without additional computa-
tion cost in the test phase. The model is trained with 8 2080Ti, 11G memory
each GPU. Pseudo ensemble is also employed. The inputs are flipped/rotated
and the HR results are aligned and averaged for enhanced prediction.

LISA-ULB
The LISA-ULB team proposed VCycles BackProjection networks generation two
(VCBPv2), which utilized an iterative error correcting feedback mechanism to
guide the reconstruction of the final SR output. As shown in Fig. 11, the pro-
posed network is composed of an outer loop of 10 cycles and an inner loop of
3 cycles. The input of the proposed VCBPv2 is the LR image and the upsam-
pled counterpart. The upsample and downsample modules iteratively transform
features between high- and low-resolution space as residual for error correction.
The decoder in the end reconstructs the corrected feature to SR image.

The model is trained using AdamW optimizer with learning rate of 1× 10−4

and halved at every 400 epochs, then the training is followed by SGDM optimizer.
Equally weighted �1 and SSIM loss is adopted for training.

lyl
The lyl team proposed a coarse to fine network for progressive super-resolution.
As shown in Fig. 12, based on the Laplacian pyramid framework, the proposed
model takes an LR image as input and progressively predicts residual images at
S1, S2...Sn levels. S is the scale factor, S = S1 × S2... × Sn, where n = logS2 .
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Fig. 11. The architecture of the proposed network by the LISA-ULB team.

Fig. 12. The architecture of the proposed network by the lyl team.

�1 was adopted to optimize the proposed network. Each level of the proposed
CFN was supervised by different scales of HR images.

GDUT-SL
The GDUT-SL team used the RRDBNet of ESRGAN [38] to perform super-
resolution. Typical RRDB block has 3 Dense blocks, which including 5 Conv
layers with Leaky-ReLU and remove BN layers. The RRDB number was set to
23. Two UpConv layer is used for upsampling. Different from ESRGAN, the
GDUT-SL team replaced the activation function with ReLU to obtain better
PSNR results.
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Residual scaling and smaller initialization were adopted to facilitate training
a deep architecture. In training phase, the mini-batch size was set to 16, with
image size of 96 × 96. 20 promising models were selected for model-ensemble.

MCML-Yonsei
As shown in Fig. 13, the MCML-Yonsei team proposed an attention based multi-
scale deep residual network based on MDSR [20], which shares most of the
parameters across different scales. In order to utilize various features in each
real image adaptively, the MCML-Yonsei team added an attention module in
the existing Resblock. As shown in Fig. 14, the attention module is based on
MAMNet [17] where the global variance pooling was replaced with total variation
pooling.

They initialized all parameters except the attention module with the pre-
trained MDSR, which was optimized for bicubic downsampling based training
data. The mini-batch size was set to 16 and the patch size was set to 48. They
subtracted the mean of each R, G, B channel of the train set for data normal-
ization. The learning rate was initially set to 1e − 4, and it decayed at the 15k
steps. The total training step was 20k.

kailos
The kailos team proposed RRBD Network with Attention mechanism using
Wavelet loss for Single Image Super-Resolution. The loss function consisted of
conventional L1 loss LL1 and novel wavelet loss Lwavelet. The conventional L1

loss LL1 is given as LL1 =
∑ | x − y |1, where x is reconstructed image and y is

ground truth image.
A wavelet transform can separate the signal features along the low and high

frequency components. Most of the energy distribution in the signal, such as
global structure and color distribution, is concentrated in the low frequency
components. On the other hand, the high frequency components include sig-
nal patterns and image textures. Since both frequency components have dif-
ferent characteristics, a different loss function must be applied to each com-
ponent. Therefore, the proposed novel wavelet loss Lwavelet is the sum of L1

loss for high frequency components and L2 loss for low frequency components
given as Lhigh =

∑N
i=1 | Ψ i

H(x) − Ψ i
H(y) |1, Llow =

∑N
i=1 ‖ Ψ i

L(x) − Ψ i
L(y) ‖22,

and Lwavelet = Llow + Lhigh, where N denotes the stage of wavelet transform
and ΨH and ΨL are high and low frequency decomposition filters, respectively.

In the experiment, N is 2 and Haar wavelet filters are used as wavelet decom-
position filters. Therefore, a total loss is defined by Ltotal = LL1 + λ Lwavelet,
where λ denotes the regularization parameter and λ = 1 was used in the proposed
method. Figure 16 shows an overview of the proposed method. Adam optimizer
was used in training process, and the size of image patch was the quarter size of
training data.
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Fig. 13. Overview of the network for the MCML-Yonsei team.

Fig. 14. Resblock with attention module for the MCML-Yonsei team.

qwq
The qwq team proposed a Multi-Scale Network based on RCAN [51]. As shown
in Fig[1], the multi-scale mechanism was integrated into the base block of RCAN
in order to enlarge the receptive field. Dual Loss was adopted for training. Mix-
Corrupt augmentation was conducted, for it allowed the network to learn from
robust SR results from different degradations, which is specially designed for the
real-world scenario.

RRDN IITKGP
The RRDN IITKGP used a GAN based Residual in Residual Dense Net-
work [38], where the model is pre-trained on other dataset and evaluated on
the challenge dataset.

SR-IM
The SR-IM team proposed frequency-aware network [29], as shown in Fig. 17. A
hierarchical feature extractor (HFE) is utilized to extract the high representation,
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Fig. 15. Overview of the proposed method of for the kailos team.

middle representation and low representation. The basic unit of the body consists
of residual dense block and channel attention module. Finally, the three branches
are fused into one super-resolved image by the gate and fusion module.

The mini-batch size was set to 8 and the patch size was set to 160 during
training. They used Adam optimizer with an initial learning rate of 0.0001. The
learning rate decayed by a factor of 0.5 every 30 epochs. The entire training time
is about 48 h.

JNSR
The JNSR team utilized EDSR [20] and DRLN [1] to perform model ensemble.
The EDSR and DRLN were trained on AIM2020 dataset, the best models were
chosen for model ensemble.

SR DL
The SR DL team proposed attention back projection network (ABPN++), as
shown in Fig. 18. The proposed ABPN++ network first conducts feature extrac-
tion to expand the feature space of the input LR image. Then the densely con-
nected enhanced down- and up-sampling back projection blocks perform up- and
down-sampling the feature maps. The Cross-scale Attention Block (CAB) takes
the outputs from down-sampling back projection blocks to compute the cross-
correlation for feature fusion. Finally, the Refined Back Projection Block works
as a final refinement that estimates the feature residuals between input LR and
predicted LR images for update. The complete network includes 10 down- and
up-sampling back projection block, 2 feature extraction blocks and 1 refined back
projection block. Each back projection block is made of 5 convolutional layers.
The kernel number is 32 for all convolution and deconvolution layers. For down-
and up-sampling convolution layer, the kernel size is 6, stride is 4 and padding
is 1.

The mini-batch size was set to 16 and the LR patch size was set to 48 during
training. The learning rate is fixed to 1e-4 for all layers for 2 × 105 iterations
in total as the first stage. Then the batch size increases to 32 for 1×105 iterations
as fine-tuning.

Webbzhou
The Webbzhou team fine-tuned the pre-trained RRDB [38] on the challenge
dataset.
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Fig. 16. The total learning diagram of for the qwq team. In upsample network, they
used features from 0.25×, 1×, 2× and 4×(HR) five scales.

MoonCloud
The MoonCloud team utilized RCAN [51] for the challenge. Totally 6 models
were used for model ensemble. Three of them were trained on challenge dataset
with scale of 4. The other three were trained on the challenge dataset with scale
of 3, which were fine-tuned on the dataset with scale of 4 after. The final outputs
were obtained by averaging the outputs of these six models.

SrDance
The SrDance team utilized RRDB [38]. A new training strategy was adopted
for model optimization. The model was firstly pre-trained on DIV2K dataset.
Then they trained their model by randomly picking one image in dataset and
randomly crop a few 40 × 40 patches, which is alike stochastic gradient descent.
Second, when model stepped, they trained on 10 pics, one 40 × 40 patch from
each picture and fed to the model.

MLP SR
The MLP SR team proposed Deep Cyclic Generative Adversarial Residual Con-
volutional Networks for Real Image Super-Resolution [35], as shown in Fig. 19.
The SR generator [34] network GSR was trained in a GAN framework by using
the LR (y) images with their corresponding HR images with pixel-wise supervi-
sion in the clean HR target domain (x), while maintaining the cyclic consistency
between the LR and HR domain.
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Fig. 17. Structure of Frequency-aware Network (FAN) for the SR-IM team. There are
three branches, representing the high frequency, middle frequency and low frequency
components. The gate attention is used to adaptively select the required frequency
components.

Fig. 18. (a): ABPN++: Attention based Back Projection Network for image super-
resolution. (b): the proposed Cross-scale Attention Block by the SR DL team.

congxiaofeng
The congxiaofeng team proposed RDB-P SRNet, which contains several residual-
dense blocks with pixel shuffle for upsampling. The network was inspired by
RDN [53].

debut kele
The debut kele team proposed Enhanced Deep Residual Networks for real image
super-resolution.
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